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Abstract

Many VLSI circuit designs are too large to be simulated with VHDL in a reasonable amount
of time. One approach to reducing the simulation time is to distribute the simulation over several
processors. This research creates an environment for designing and simulating structural VADL
circuits on the Intel iPSC/2 and iPSC/860 Hypercubes. Logic gates and system behaviors are
partitioned among the processors, and signal changes are shared via event messages. Circuit simu-
lations are run over the SPECTRUM parallel simulation testbed, and the null-message paradigm is
used to avoid deadlock. Structural circuits ranging from forty to over one thousand logic gates are
correctly simulated. Although no attempt is made to find optimal partitioning strategies, speedups

are obtained for some configurations.




PARALLEL SIMULATION OF
STRUCTURAL VHDL CIRCUITS ON
INTEL HYPERCUBES

I. Introduction

1.1 Background.

Advances in Very Large Scale Integrated (VLSI) circuit technology increase the transistor
count on a chip by about 25% per year, doubling every three years (17:17). In order to efficiently
design increasingly complex VLSI circuits, designers use simulation tools to validate their circuits
prior to fabrication. In 1979, the Department of Defense (DOD) started the Very High Speed
Integrated Circuit (VHSIC) program to employ the use of high density VLSI circuits in military
systems. The VHSIC Hardware Description Language (VHDL) program began in 1983 to stan-

dardize the tools needed to efficiently design and test these circuits (13, 22).

Many circuit designs are too complex to be simulated with VHDL in a reasonable amount
of time. In an effort to improve VHDL’s performance, the Defense Advanced Research Projects
Agency (DARPA) has sponsored the QUEST project, whose goal is a thousand-fold speed-up
in VHDL simulation (28:1-1). One approach to reducing the simulation time is to distribute the
simulation of the design over several processors. If VHDL’s capabilities could be effectively mapped
to a parallel processor, the simulation would be faster and users could design and run more complex
circuits. Efforts at AFIT have centered on creating a parallel implementation of VHDL for this

purpose.

In 1991 AFIT investigated the data structures of Intermetrics’ sequential VHDL simulator

and demonstrated a way to intercept intermediate C code from Intermetrics’ compiler, transform it,




and run parallel simulations on the Intel iPSC/2 Hypercube (10). This research effort composes the
tools necessary to create and run structural VHDL simulations on the Intel iPSC/2 and iPSC/860

Hypercubes.

1.2 Problem Statement.

AFIT has investigated implementing a parallel VHDL simulator to decrease the simulation
times of VLSI circuits; however, an automated method for creating parallel VHDL circuit deserip-
tions, a correct parallel simulator, and a common distributed testbed are necessary to generate and

simulate large VHDL circuit models.

1.8 Research Objectives.

The main objective of this thesis is to demonstrate and test the capability of mapping large

sequential VHDL circuit descriptions to distributed processing systems. The main goals are to

automate the procedures for generating hierarchical, structural VADL models.

create a VHDL simulator that correctly simulates structural VHDL circuit descriptions and

is flexible enough to partition simulations among the processors of a distributed system.

provide a common testbed to facilitate experimentation with parallel simulation protocols

and investigation into optimizing circuit partitioning strategies.

demonstrate the simulator with several VADL models.

determine if speedup can be achieved through the use of parallel simulations.




1.4 Assumptions.

Comeau did the preliminary research into transforming Intermetrics’ VHDL models into mod-
els that can be simulated in a parallel environment. The following assumptions build upon Comeau’s

research (10:1-3):

e While strict meanings of “parallel” and “distributed” processing systems vary from source to
source, AFIT has generally accepted “parallel processing” to indicate processing on a single
computer composed of multiple processors, while “distributed processing” refers to processing
among several “independent” computers across a network. Nonetheless, as with Comeau’s

thesis, this research uses the terms “parallel” and “distributed” interchangeably throughout.

o The parallel computers used for development and research are the Intel iPSC/2 and iPSC/860

Hypercubes.
e Source code is written in the standard C programming language (non-ANSI).

o To further research efforts for both DARPA and AFIT and stay consistent with the AFIT
environment, the Chandy-Misra conservative synchronization algorithm for event-driven sim-
ulations is used. In this thesis, the null-message protocol is implemented via the use of a

parallel simulation environment known as SPECTRUM (Simulation Protocol Evaluation on

a Current Testbed using Reusable Modules) (32).

e The output from the analyze, model generate, and build phases of the Intermetrics VHDL

compiler are correct and accessible.

o The VHDL test cases are within the VHDL subset that is used to demonstrate parallelized

VHDL.

o VHDL source code is compiled and model generated in Intermetrics VHDL, Version 2.1,

September 1990.




1.5 Scope.

Comeau outlined ten steps to transform Intermetrics’ intermediate C code into modules that
can run on a parallel VHDL simulator (10:4-6). These operations are automated, and new steps

are added to reduce unnecessary function calls and enhance simulator capabilities.

A new parallel simulator, VSIM, is written. The concepts for VHDL simulation are taken
from Intermetrics’ simulator, and from Comeau’s parallel VHDL simulator called PVSIM. The par-
allelization of VSIM is accomplished with minimal changes to the application by utilizing SPEC-

TRUM.

The parallel simulation protocol is implemented using SPECTRUM “filters.” This provides

a level of modularity that aids future experimentation with new protocols and instrumentation.

Various circuits are implemented and tested. Also, feedback among LPs is demonstrated.

1.6 Limitations.

1.6.1 VHDL Source Code Limitations for VSIM. The subset of circuits that can be simu-
lated with VSIM includes structural descriptions of logic gates and other simple processes. Circuits

are created the same way as for Intermetrics’ circuits, with the following limitations:

Signals can be bits or bit-vectors; however, bit-vector inputs must be described one bit at a

time, e.g., Bus(0) <= ‘1’ after 10 ns;.

Processes should be one-line descriptions (Out1 <= In1 AND In2 after gate_delay;); however,
multiline processes—delimited by begin and end process may be used provided they either wait
on all signals, or the process only executes once. For example, if a process has input signals a, b,

and ¢, then the following process declarations are acceptable:

process
begin




wait on a, b, c;
-- process description here
end process;

process(a,b,c)
begin

-~ process description here
end process;

process
begin
~- process description here
wait; -- that is, wait indefinitely

end process;

It is uncertain how functions and procedures may act in VSIM. For example, functions to

describe multi-valued logic—or bus resolution—have not been implemented or tested.

As in the case with functions, VHDL attributes, “buffer” ports, file I/O, etc., have not been

implemented or tested.

1.6.2 Postprocessor Limitations. A postprocessor, pbuild, is designed to transform Inter-
metrics generated intermediate C code for paralle] simulation with VSIM. Therefore, the postpro-

cessor only works for Intermetrics-generated intermediate C code.

The postprocessor depends heavily on recognizing unique patterns in the intermediate C code.
This is accomplished using lex, a UNIX-based lexical analyzer. If future enhancements are to be
made to the postprocessor, or if the subset of VHDL circuits is to be expanded, each step of the

postprocessor should be re-evaluated for possible impact.




1.6.3 VSIM limitations. The user must first run the parallel simulator on one node to
identify behavior id’s.! This is accomplished by enabling a “MAPPING” definition in the simulator.

Only then can a circuit-to-process mapping be defined.

Circuit partitioning must be done “by hand,” i.e., the user creates the appropriate files to

define logical process (LP) relationships and behavior-to-LP assignments.

The “receive message” filter used with SPECTRUM is based on a current filter called “chan-
clocks.” However, the new filter is modified to have access to the local LP’s next event time
in VSIM; therefore, the protocol (in the SPECTRUM filter) is modified in an application specific

manner.

When OUTPUT is defined in VSIM, every signal change is reported. This becomes a bottleneck
in parallel simulations on Intel Hypercubes, as processors contend for common resources, e.g., the

host operating system and the disk drives.

1.7 Thesis OQverview.

Chapter 2 analyzes the current research efforts in parallel discrete-event digital simulation and
how they relate to this thesis. Also, other efforts in parallel VHDL simulation are reviewed. Chapter
3 provides the methodology for implementation of the post-processor, the parallel VHDL simulator,
and enhancements to the parallel VHDL environment. Implementation of this methodology is
discussed in Chapter 4. Chapter 5 discusses the research findings and results. Finally, conclusions

and recommendations for further research are included in Chapter 6.

In addition, the following appendices are included:

e Appendix A: Definitions.

1A “behavior” is an executable process representing a VHDL logic gate or other simple process.




e Appendix B: AFIT Parallel VHDL User’s Guide. Documentation on how to prepare and run
VHDL descriptions in the parallel processing environment. Also, a test case is demonstrated—

using an edge-triggered D flip-flop.

e Appendix C: Subset of VHDL Source Code for Parallel Stmulation. Describes, with examples,
the subset and syntax for VHDL source that can be simulated with the parallel VHDL

simulator.
o Appendix D: Design of the Wallace Tree Multiplier.

e Appendix E: Summary of Performance Data.

1.8 Summary.

VHDL models are executed sequentially in current commercial simulators. As chip designs
grow larger and more complex, simulations must run faster. One approach to increasing simulation
speed is through parallel processing. This research transforms the hierarchical structural models

created by Intermetrics’ sequential VHDL simulator into models for parallel execution on the Intel

iPSC/2 and iPSC/860 Hypercubes.




II. Background

2.1 Overview.

In this chapter, several simulation techniques are discussed, including traditional simulation
techniques on sequential machines, distributed simulation techniques, and digital logic simulation.

Also, previous attempts to parallelize VHDL are reviewed.

2.2 Traditional Simulation.

Many real-world systems can be modeled and simulated, using computers, to study their
behavior under various conditions. Examples of simulators include battlefield simulators, flight
simulators, simulations of factory assembly lines, electronic circuit simulations, etc. In continuous
simulations, the state of the model may change continuously over time. Discrete-event simulations
are used to model processes whose states change discretely at specified points in time, as shown in
Figure 1 (27). Continuous systems, like digital circuits, may also be modeled with discrete-event

simulations.

Sequential simulators usually utilize three data structures (15):

1. The state variables which describe the state of the system.
2. An event list which contains the schedule of all future events.

3. A global clock variable to maintain the simulation time.

There are two main methods of implementing discrete simulations—time-driven simulations
and eveni-driven simulations. In time-driven simulations, the global simulation clock is used to
advance the simulation uniformly through time. With respect to digital circuits, the time-driven
approach is not very efficient. If a circuit is in a quiescent state for a long period of time, waiting for

the clock to advance becomes time consuming and reduces performance. In event-driven simulation,
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Figure 1. Response Measurement from a Discrete-Event Simulator (27)

processes schedule their outputs on a global event list. Then the simulation clock can advance from

one event time to the next, since no computations need to occur between event times (26:136-137).

Given this introduction to traditional discrete-event simulation, techniques for distributed

simulation can be reviewed.

2.8 Distributed Simulation.

With traditional techniques on sequential processors, large simulations in engineering, meteo-
rology, military applications, and circuit design, to name a few, consume large amounts of time (15).
Parallel discrete-event simulation, or distributed simulation, refers to the execution of a simulation
on a number of processors. Ideal candidates for distributed simulation are systems whose phys-
ical processes (PPs) execute concurrently and can be modeled by message passing among their
corresponding logical processes (LPs) (7:198-199). Electronic circuit systems can be simulated in
this way, where the LPs representing the components, or groups of components, that make up the
circuit are partitioned among the processors. Hence, the time required to complete a simulation

should decrease since computations are executed in parallel (5:11).




2.8.1 General Performance Model. The use of a global clock in distributed simulation con-
stitutes a bottleneck because the LPs would all operate in lock-step. At any global time ¢, a number
of LPs may have nothing to do. In asynchronous models, however, each LP contains a local vir-
tual time (LVT), and the LPs are allowed to progress at irregular intervals. In most models, LPs
communicate via time-stamped messages in the form of tuples, (tx, mi), where m; is the message

sent at LVT ¢ (7:199). The specific rules for message passing depend on the particular protocol.

A global event-list would also be a bottleneck in distributed simulation. Therefore, each
LP usually maintains its own event-list, or queue. Events either received or self-generated can be
scheduled in the local event-list, if necessary, as well as sent to “downstream” LPs, as required by

the model (7:198).

2.8.2 Speed-Up and Efficiency of Distributed Simulations. If the simulation time for p pro-
cessors is Tp,, and the time for the same simulation on one processor is Tj, then the speed-up of the
distributed simulation is T3 /T,. An ideal speed-up would be p. The efficiency of the simulation
is therefore the speed-up divided by p. The efficiency indicates how much the communications
overhead, time-management, amount of concurrency, and load imbalance among LPs deters the

overall speed-up (29:43) (14).

2.3.3 Distributed Simulation Protocols. Asynchronous simulation protocols can be loosely
classified as either conservative or optimistic. Conservative protocols allow an LP to advance its
LVT only when it is absolutely certain it cannot receive an event with a time-stamp less than the
new LVT. Optimistic protocols allow each LP to proceed at its own pace even though events may
arrive out of the past. Time Warp corrects out of order messages by rolling back, i.e., restoring
its state to a time prior to the actual message time and then recomputing forward. Therefore,

optimistic protocols require state saving capabilities for each LP.
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2.3.3.1 Conservative Distributed Simulation Protocols. Chandy and Misra have pro-
posed an asynchronous conservative protocol where each LP manages its LVT and event-list as

follows:

An LP simulates the corresponding PP in the following manner. Let the sequence of
messages sent by LPi to LPj be (t;,my), (12, m2), (ta, ma), . .. We require that

1. 0<t; €t3 <t3... (monotonicity) and
2. PPi must have sent message m; to PPj at time {3, k= 1,2,3,... and

3. PPi must have sent no other messages to PPj besides m;,ma, ..., mg, ..., i.e., the
sequence of messages sent by an LP must correspond exactly to the actual sequence
of messages sent by the corresponding PP. During the course of the simulation, if
LPi sends LPj a message (tx,m;) it implies that all messages from PPi to PPj
have been simulated up to time t;. (7:199)

This model requires static allocation of processes, i.e., the distribution of LPs among the
processors is fixed, and the communication paths among the LPs is known prior to simulation (9).
Digital circuit simulations, including VHDL, conform to this assumption. This model also assumes
no buffering of messages, so a sending LP must wait for all downstream LPs to receive a message
before it can progress. Also, an LP must wait for messages from upstream LPs whose clock values

are equal to its LVT (7:200).

Misra shows that given this protocol, deadlock can occur in two different ways (25:55). Con-
sider the simple model of Figure 2. Suppose for every message sent by LP0O, LP1 generates a
message and only sends it to LP2. Then LP4 never receives a message from LP3, because LP3’s
LVT is still at 0. Therefore, the LVTs of LP4 and LP5 each remain at 0. The other situation that
can cause deadlock is cyclic waiting, as shown in Figure 3. The numbers on each arc correspond
to the time-stamp of the last message sent. None of the LPs send a message without receiving one
first, i.e., they don’t predict future messages. LP2 has received a message at ¢t = 20 and advanced
its LVT to 20, and hasn’t generated a corresponding output message (this particular message was
consumed). So, LP1 is waiting at ¢ = 20 to receive a message from LP3, and LP3 is waiting at

t = 15 for a message from LP2, while LP2 is waiting on LP1. Hence, deadlock has occurred (25, 7).
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Figure 2. A Distributed System That Does Not Progress (25:56)

Figure 3. A Distributed System That Deadlocks (25:56)
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The two methods for handling deadlocks are avoidance and detection. Initially, Chandy and
Misra proposed the use of null messages as a means of deadlock avoidance (6). A null message
contains just an updated time, and no other state information (f, NULL). The null message
guarantees that no messages are sent with a time less than t. In the case of Figure 2, every time
LP1 sends a message to LP2, it sends a null message with the same time-stamp to LP3. This allows
LP3, LP4, and LP5 to progress. For the cyclic waiting problem of Figure 3, after LP2 receives
a message from LP1 at ¢ = 20, it sends (20 + tzpadetay, NULL), where t1pageiay corresponds to
the propagation delay of LP2. If t1pageiay = 5, then LP2 sends (25, NULL), and LP3 responds
by sending a null message to LP1 with LP3’s propagation delay added to the time-stamp, e.g.,

(25 + tLp3detay, NULL). In this way, the simulation advances.

The null message approach is costly because a large fraction of messages, and therefore
communication overhead, turns out to be null messages (7). Another technique proposed by Chandy
and Misra is to allow the simulation—or a subset of the simulation—to deadlock and then use a
master controller to detect and recover from deadlock (7:202). Detection can be accomplished
using the termination detection algorithm of Dijkstra and Scholten, or from a method proposed by
Chandy and Misra (8:148) (7:202). Then, the controller polls all LPs that are deadlocked for their
earliest next event time. The minimum of these times is the safe time for all deadlocked LPs to
advance, since no events can occur before this safe time. Therefore, the controller broadcasts the

safe time to all affected LPs, which in turn update their LVTs, and the simulation continues.

The use of a central controller affects simulation performance since it must periodically in-
tervene and evaluate the simulation to see if deadlock has occurred. However, Chandy and Misra
maintain the interference is not expected to be a bottleneck since active interference occurs only

at deadlock (7:202).

2.3.3.2 Optlimistic Disiributed Simulation Protocols. The Time Warp mechanism for

distributed simulation is an optimistic protocol. LPs are allowed to go forward in time, risking the
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chance that another process may send a message that affects the LP’s history. The LP then “rolls
back” to the appropriate time in order to handle the new message. This requires each LP to have
state-saving capabilities, and to have the ability to “unsend” messages that now are invalid. Also,
because of its rollback capability, the Time Warp mechanism can handle dynamic process allocation
and connectivity (9). In his survey of parallel discrete-event simulation paradigms, Fujimoto gives

the following description of Time Warp:

The Time Warp mechanism, based on the Virtual Time paradigm, is the most well
known optimistic protocol. Here, virtual time is synonymous with simulated time. In
Time Warp, a causality error is detected whenever an event message is received that
contains a timestamp smaller than that of the process’s clock (i.e., the timestamp of the
last processed message). The event causing rollback is called a straggler. Recovery is
accomplished by undoing the effects of all events that have been processed prematurely
by the process receiving the straggler, i.e., those processed events that have timestamps
larger than that of the straggler.

An event may do two things that have to be rolled back: it may modify the state of
the logical process, and/or it may send event messages to other processes. Rolling back
the state is accomplished by periodically saving the process’s state, and restoring an
old state vector on rollback. “Unsending” a previously sent message is accomplished by
sending a negative or anti-message that annihilates the positive messages. If a process
receives an anti-message that c-rresponds to a positive message that it has already
processed, then that process must also be rolled back to undo the effect of processing
effects of the erroneous computation to eventually be canceled. It can be shown that
this mechanism always makes progress under some mild constraints.

As noted earlier, the smallest timestamped, unprocessed event in the simulation is
always safe to process. In Time Warp, the smallest timestamp among all unprocessed
event messages (both positive and negative) is called global virtual time (GVT). No
event with timestamp smaller than GVT will ever be rolled back, so storage used by
such events (e.g., saved states) can be discarded. Also, irrevocable operations (such
as I/O) cannot be committed until GVT sweeps past the simulated time at which the
operation occurred. The process of reclaiming memory and committing irrevocable
operations is referred to as fossil collection. (15)

2.4 Overview of SPECTRUM.

In 1988, Reynolds recognized the existence of a spectrum of options for parallel simulation
protocol designs (30). In order to study classes of protocols for classes of applications, the Uni-

versity of Virginia developed SPECTRUM (Simulation Protocol Evaluation on a Current Testbed
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Figure 4. Block Diagram of the SPECTRUM Testbed (31)

using Reusable Modules) (32). SPECTRUM is a common testbed used for creating parallel simu-
lations by taking an application and breaking it into application components, i.e., “pieces” of the
application that run concurrently. Each application component, along with a process manager and
node manager, make a logical process (LP), as shown in Figure 4. The process manager provides
LP-level functions to the application for initialization, local clock management, and event han-
dling. The node manager provides hardware-specific functions to the process manager for event
traffic among the LPs. To implement specific protocols, filters are written that “intercept” an LP-
level function call by the application. The filters may then invoke protocol-specific actions, such as

null message generation, LP polling for a message, etc.

AFIT has continued to maintain the SPECTRUM testbed as a baseline for queueing sim-
ulations (33), battle simulations (3), and VHDL simulations. Also, research is being conducted
on a hardware coprocessor that would emulate the basic SPECTRUM functions with microcode
capability to modify simulation protocols (11). For details on the SPECTRUM environment at

AFIT, refer to Hartrum (16).
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2.5 Other Parallel VHDL Research.

In 1989, Proicou (28) developed a distributed system consisting of a scalable kernel that
supports VHDL simulations on the Intel iPSC/2 Hypercube. The distributed simulation kernel
was an extension of the AFIT VHDL tool set, described in (12). The simulation ran over the
SPECTRUM testbed. Proicou found that a general purpose simulation kernel may not be able to
take advantage of the presence or absence of feedback loops in the simulation (28:7-1). In general,
it was determined unlikely that one distributed kernel design is efficient enough to provide good
performance for the wide range of VHDL models. For example, primarily behavioral descriptions
may contain a small number of large processes, while primarily structural descriptions may contain

a large number of very simple processes (18).

In 1990, Ball and Hoyt (1) reported work in progress to implement a parallel VHDL simulator
using “Adaptive Time Warp,” in which they look for better performance then Chandy-Misra or
Time Warp. Adaptive Time Warp is similar to Time Warp; however, it attempts to reduce “time-
faults,” i.e., messages that cause roll-back. If a process has recently experienced a high number of
“time-faults,” it suspends execution for a short time, known as the “blocking window,” which is
proportional to the message bandwidth. Work is in progress to develop a testbed which implements

this strategy.

Comeau’s 1991 thesis investigated how to modify a commercial VHDL compiler and simulator—
Intermetrics VHDL—for parallel simulation on the Intel iPSC/2 Hypercube (10). In so doing, he
looked for parallelism in the intermediate C code generated in the “model generate” phase of compi-
lation. Then, he modified the C code for compatibility with the iPSC/2 and his parallel simulator,
PVSIM. PVSIM is the product of a portion of Intermetrics’ C source code simulator routines, along
with routines added by Comeau. He tested the simulator on three 8-bit adder circuits: a carry-save

adder, a carry-lookahead adder, and a ripple-carry adder. In general, simulations using four to
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eight processors exhibited a speedup at least twice that of simulations on one node. His results led

him to the following conclusions:

e Minimize and balance the number of active signals in a logical process.
o Carefully modify the Intermetrics’ generated C source code.

¢ Ensure a high computation to communication ratio. (10:6-12)

This thesis builds on the lessons learned in Comeau’s research. For example, modifying Intermetrics’

C code is now automated.

In 1992, Zhang (34) investigated possible methods to partition a VHDL design for hierarchical
distributed simulation. He evaluated VHDL entities, blocks, and processes for modularity and con-
currency. Zhang reported the following observations with respect to determining the optimal struc-

ture (entity, block, or process) for use as an “atomic model” in parallel VHDL simulation (34:203):

o The entity descriptions define a clear interface between components; however, using the entity

does not fully utilize the inherent parallelism among the blocks and processes.

e The block would exploit more parallelism than the entity, but not as much as the process.

Also, blocks can be nested, which causes concurrency problems.

o VHDL forces concurrency at the process level, so for the greatest amount of parallelism,
Zhang concludes that the process is the best atomic model for parallel simulation. However,

processes do not have a clearly defined interface—as is the case with entities and blocks.

Zhang introduces the refined process, which is generated by defining a connection port for every
signal or port in a process and removing wait statements. In this manner, the process interface is
clearly defined. While this method exploits the maximum amount of parallelism and provides a

way to theoretically study the behavior of a VHDL design, Zhang concludes that it is not robust

enough for practical use (34:204).
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2.6 Summary.

Discrete-event simulation mechanisms are commonly used in sequential simulations. By in-
troducing the concept of logical processes, local virtual time, and message-passing, asynchronous
simulation protocols can extend simulation principles to exploit parallel and distributed computers.
The conservative Chandy-Misra protocol guarantees an LP does not receive messages out of order
with respect to time, but a mechanism must be provided to avoid or detect deadlock. The optimistic
method of Time Warp allows LPs to proceed at their own pace based on present information. If
a message comes in with a time stamp in the past, then an LP must roll back to that simulation

time in order to handle the message.

As interest in increasing the performance of VHDL grows, a number of research efforts have
been conducted to investigate ways to map VHDL simulations to parallel processors. This thesis
continues the work initiated by Comeau—mapping Intermetrics’ VHDL capabilities to the Intel

iPSC/2, and now also to the iPSC/860.
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III. Methodology

8.1 Introduction.

When a VHDL circuit is compiled with the Intermetrics VHDL toolset, the intermediate
C code can be intercepted and transformed to be linked with AFIT’s parallel VHDL simulator
(VSIM). VSIM can run sequentially on a single processor, or in parallel on the Intel iPSC/2 or
iPSC/860 Hypercubes. For parallel simulations, VSIM runs over SPECTRUM. The subset of
VHDL circuits that can be simulated with VSIM includes structural descriptions of logic gates
and simple processes. The “behavioral instances” which represent these processes are grouped into

logical processes (LPs) and the LPs are distributed among the nodes of any cubesize.

Comeau identified the data structures and the basic cycle required for simulation (10:3-9).

This chapter reviews the data structures, simulation cycle, and requirements for parallel simulation.

8.2 OQverview.

In order to run a sequential VADL simulation with the Intermetrics’ VADL toolset, the circuit
designer must compile the VHDL source code, and then build and simulate the circuit model. This

process is shown in Figure 5.

Circuits are first compiled using the vhdl command. This generates an IVAN file (which
stands for Intermediate VHDL Attributed Notation). The IVAN file contains the intermediate
C code descriptions of the circuit components—which the simulator uses. By using Intermetrics’
compiler, the syntax and semantics of VADL circuit descriptions have already been checked, and
correct C code is automatically generated. Normally, generation of the IVAN file is transparent to

the VHDL circuit designer.

During the model generate phase, the specific C code descriptions—and their header files—are

extracted from the IVAN file and object files are created. These files are also normally transparent
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Figure 5. Simulation Session Using Intermetrics’ Toolset (10:3-8)

to the designer; however, for parallel simulaticns, they are transformed into files that are compatible

with VSIM.

In the build phase, a compilation script is generated that compiles and links the C modules
with Intermetrics’ simulator modules for operation. Now, the circuit can be simulated with the
sim command, and a report can be generated with the rpt command using Intermetrics’ report

control language.

For parallel operation, the intermediate C code is transformed into C code that can be linked
with VSIM and run on the hypercube, as shown in Figure 6. For this to happen, the code is
transformed using a postprocessor called pbuild, which reads the compilation script file and uses
plex to extract and transform the intermediate code. The new code is linked with VSIM, which,

together with SPECTRUM, runs the simulation on the hypercube.
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Figure 6. Parallel Simulation Session
3.3 Data Structures.

The data structures for sequential operation are based upon Intermetrics’ VHDL simulator.

The four main data structures are as follows:

e Behavior Instances. The behavior instances are used to describe the behavior of each
component (AND gate, OR gate, etc.) and other types of processes. Behavior instances
contain a unique id number and a pointer to their execution routine in memory. Several
behavior instances may share the same execution routine, e.g., all AND gates in a circuit may
use the same algorithm to execute.! The basic structure for behavior instances is shown in

Figure 7.

o Signal Records. The signal records maintain the current state of each signal, including a

unique identifier, signal name, current value, size, and pointers to behavioral instances (to

1This would be true if, for example, all AND gates used the same entity /architecture pair.
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typedef struct BEINSTS { /* behavior instance */

BHKIND prty; /* kind (user, system, etc.) */
INT32 id; /% id */
ERRT (*exec)(); /* behavior function */

} BHINST;

Figure 7. Basic Structure for Behavior Instances

typedef struct { /* signal record */
UINT32 id; /* id */
char *name; /* name */
unsigned size: 4; /* size of data value (bytes) */
UINT32 cval; /* current value (offset) */
CONNT *conns; /* behavioral connections */

} SRREC;

Figure 8. Basic Structure for Signal Records

identify each signal’s connections). The current value field is an offset from a global address
space whose base is denoted by the global variable cv. See Figure 8 for an example of the

signal record structure.

e Behavior List. This list contains all behaviors scheduled to execute for the current sim-
ulation time. At the beginning of the simulation (¢ = 0), all behaviors are scheduled for
execution to initialize their input and output values. As behaviors are executed, they are
removed from the list. After the simulation clock advances past zero, signal changes cause
affected behaviors to be re-scheduled and re-executed. The behavior list is a simple linked-list

called tmpbeh, see Figure 9.2

2The variable name tmpbeh is used to maintain consistency with Intermetrics’ naming conventions.

22




typedef struct TMPKS { /* behavior list */

BHIEST #*beh; /% behavior instance pointer */
struct TMPKS #nextb; /* next behavior »/
} THPK;

Figure 9. Behavior List Structure

typedef struct SIG_RECS { /* active record structure */
int time; /* signal change time */
SRP sr_ptr; /* signal record */
int value; /% posgible nev value */
struct SIG_RECS *next_sig_rec;

} SIG_REC;

Figure 10. Active Record Structure

e Active Records. This is the simulator’s next-event list, called actv. An “event” corresponds

to a behavior output value that may be a signal change. Each entry contains an event time, a

pointer to the correct signal in the signal record list, and a possible new value for that signal

(depending on delay type, etc.), as shown in Figure 10.

An example of the interrelationship of the VHDL data structures is shown in Figure 11. Here,

signal number 2, called CIN, is changing from a ‘0’ to a ‘1’ at time 50. The active record entry has

the new value, and a pointer to the specific signal record. The signal record has a pointer to the

global memory space in cval, and the list of affected behaviors, i.e., the AND gate and XOR gate.

Therefore, these behaviors are added to the behavior list for execution at time 50.

3.4 Sequential Simulation Cycle.

The sequential simulation cycle for VSIM is shown in Fig 12. The following “routines” run
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Figure 11. Interrelationship of VHDL Simulation Data Structures (10:3-14)
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Figure 12. The VHDL Simulation Cycle (10:3-15)

the simulation:

e post. Posts each event to the active record list whenever a behavior has executed.

e get_low_time. Returns the lowest next-event time from the active records list. The simula-
tion clock is updated to this “low time.” Records with this time are removeq from the active

record list and sent to the compare_values routine.

e compare_values. Compares the new data value of each event (new to the old data value in
memory that is associated with that event’s behavior instance, i.e., circuit component. If the
value is the same, the event is simply ignored (the message is consumed); otherwise, affected

behaviors are scheduled on the behavior list for operation.

e execute_behavior. Removes behaviors from the behavior list and executes them.3

3 Actual execution of each behavior instance occurs in the intermediate C code. These behavior functions call the
post function directly.
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sim_it ()
{
SIG_REC *signal;

/* while active record list and behavior list are not empty */
while (actv != NULL {| tmpbeh !'= NULL) {
while (tmpbeh != NULL) {
execute_behavior(); /% execute behavior and post =/
remove_behavior();
}
update_sim_time(get_low_time()); /* process low time */
while (signal = active_exists(*sim_time)) {
if (unchanged(signal)) { /* compare values */
remove_signal(signal);
}
else {
update_signal(signal);
schedule_behaviors(signal);
remove_signal(signal);
}

Figure 13. Main Simulation Loop in VSIM

At the beginning of the simulation, input signals are present in the active record list, and
all behaviors are scheduled for execution at ¢t = 0. The simulation starts at execute_behavior.
The main (sequential) simulation loop in VSIM is shown in Figure 13. This Figure shows that the
simulation cycles from executing behaviors to extracting signal changes until the active list and

behavior list are empty. Specifically, while either list is not empty, perform the following:

1. Execute all behaviors on the behavior list, posting the resulting signals after each execution.
2. Update the simulation clock to the next lowest time on the active list.

3. Extract every active record with a time-tag equal to the simulation clock.
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4. If the active records indicate a signal change (when compared to their current value in mem-

ory), then update the signal’s value in memory and schedule affected behaviors.

5. Go back to step 1.

3.5 Active List Management.

A behavior executes at time ¢ when one of its input signals changes at time . When a behavior
executes, the resulting output signal is posted to the active list in time order at ¢t +tpgray, where
tpELAY is the delay of the behavior. If n input signals change at ¢, the behavior executes n times
and calls the post routine n times to post the resulting signal output at ¢ + tprray. Since the
behavior executes on each input signal change, the correct output posted to the active list always
corresponds to the last signal change for a given time, {. Therefore, for correct operation, if an
event to be posted matches an event behavior id and time stamp in the active list, the old event is

replaced by the new event.

In VHDL, a component may be defined to have an inertial or transport delay-type. An inertial
delay corresponds to components which require input signals to persist for a given time before the
output signal changes. A transport delay is similar to a “wire delay,” the output gets the function

of the inputs after delay. The default delay-type for logic gates is inertial.

3.5.1 Transport Delays. Figure 14 shows an AND gate with a transport delay. The output
function, Out_! = In_1 AND In_2 after gate delay, occurs regardless of the time duration of the
input signals or any combination of input signals. Therefore, no special action is required when

posting the output to the active record list.

3.5.2 Inertial Delays. The rule for inertial delays is that the output does not change within
the inherent delay of the logic gate. For active list management, if a behavior executes at time ¢

and its corresponding output is to be posted at tygw _gvENT =1+ tpELAY, and a signal change
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Figure 14. An AND Gate with a Transport Delay.

can be found for the same behavior with a time, tgyenT, where t < tgvENT < tNEW _EVENT,
then the output at tgy gy is removed if the signal value al tygw_evENT 15 the opposite of the

value at tgyvenT.

Figure 15 shows an AND gate with an inertial delay of 3ns. At 3ns, In_2 goes to a logic ‘1’
and the gate is executed. As a result, an output of ‘1’ is scheduled in the active list with a time
tevENT = 6ns. At 5ns, In.2 goes back to ‘0’, the gate is executed, and an output of ‘0’ is generated
at tnew _EVENT = 8ns. When the new event is posted, the change at tgygnT is identified and
removed from the active list because (t = 5) < (tgvenT = 6) < ({NEW_EVENT = 8) and the value

at tvew _evENT (‘0’) is the opposite of the value at tgvent (‘7).
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Figure 15. An AND Gate with an Inertial Delay.

3.6 Transformation of Intermediate C Code.

The intermediate C code contains the circuit-specific information. During the simulation, it
is this code which instantiates the signals and behaviors, and their interrelationships. Also, this

code contains the functions that describe the behavior of every behavior instance.?

VSIM does not support every capability of VHDL. For example, processes with wait state-
ments are not supported. Also, complex behavioral processes are not supported, e.g., processes that
manipulate integers (instead of bits) as signals. As this project grows, more of the intermediate C
code can be included and compiled with VSIM. To make the intermediate C code compatible with

the current version of VSIM, the following general steps must be taken:®

o Identify and extract the files that were generated during the model generate phase.

e Modify the #include directives accordingly.

4Several behavior instances may share the same function.
5The specific steps—and their implementation in pbuild and plex—are discussed in Chapter 4.
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3.7

Remove calls to trace routines and other trace statements. VSIM does not support tracing

capabilities.

Modify the mksig() function call to include a field for the signal name. This is so VSIM

output can refer to signals by name instead of identifier.

Modify the behavior functions to report the name of the entity/architecture pair it represents

(if MAPPING is turned on in VSIM).
Change main() to vhdl_main() so VSIM can call it after initialization.

Modify the intermediate code to call VSIM’s init_cv() and sim_it() routines for circuit

initialization and to start the simulation, respectively.

Parallel VADL Simulation.

3.7.1 SPECTRUM and VSIM. As shown in Figure 16, VSIM is run over SPECTRUM in

order to “parallelize” the simulation and evaluate the effectiveness of various protocols on paral-

lel VHDL simulations while requiring minimal modifications to the original application—VSIM.

Spectrum allows the application to be broken into LPs, and the LPs communicate with each other

with function calls to the “LP manager”—1lp_man.c. These function calls can be interrupted by

“filters,” which may provide additional handshaking, clock, or queue management, as required for

various protocols. The main functions are

lp_init(). Ensures LPs are fully initialized. Builds filter tables, if any.

e 1p_get_event(). Get the next event from the SPECTRUM queue.

e 1p_post_event(). Send event to specified LP.

e 1p_advance_time(). Advance an LP’s local time.®

SRecently, a terminate filter was added to SPECTRUM. VSIM was not modified to take advantage of this new
filter.
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VSIM

lp_manc  [wee——  filters

cube2.c

hypercube

Figure 16. VSIM on the SPECTRUM Testbed (One LP Shown)

The hardware interface to the Hypercubes is provided in the functions in cube2.c. In general,
lp_man.c makes these calls, and the application (VSIM) makes only LP-level calls. LPs can be
partitioned among processors in a number of ways. Because of the multitasking capabilities of the
Intel 80386, a “logical process” does not have to correspond to a “physical processor.” Therefore, a
simulation with eight LPs can be partitioned among one to eight processors of the iPSC/2.7 On the
iPSC/860 Hypercube, however, there must be a one-to-one mapping of LPs to processors, because

each i860 processor does not support multitasking.®

3.7.2 The SPECTRUM/VSIM Filters. The SPECTRUM filters for VSIM are based on a

previously existing filter called chanclocks. These filters provide the null-message protocol.

In general, messages among LPs are signal changes with the structure of Figure 17. Once an

event is received, VSIM converts it into an active record and posts it in the active list.

7AFIT’s iPSC/2 Hypercube has eight Intel 80386 processors.
8The iPSC/860 Hypercube at Wright-Patterson AFB has eight Intel i860 processors.

31




typedef struct event {
int from_lp; /#* 1lp id of 1lp sending event */
int to_lp; /* 1p id of destination 1lp */

int time; /% timestamp of event */
int event; /* event type or number */
int id; /* signal id %/

int value; /* signal value */
struct event *next;

Figure 17. Event Structure for Message Passing

For this discussion, ¢yyrz is the null message time, toug is the lowest time stamp of an
LP’s SPECTRUM input queue, tygq is the “low time” in the local LP’s active list (in VSIM), and

tpELAY is the output delay of an LP.°

The safe time, tsorg, is the local virtual time (LVT) an LP can safely approach. It is the
minimum input time of all input arcs. In other words, an LP knows it does not receive a message
prior to this time, so it is safe to advance it’s LVT to tsarp. Incoming NULL messages are used

to update this safe time, and serve no other purpose.

Incoming events in SPECTRUM’s queue are stored in time order. Therefore, if an event at
the head of this queue has a time stamp less than or equal to ts4rg, the event may be passed to
VSIM upon request. This is called a “valid event,” because by the Chandy-Misra paradigm, it is

guaranteed that no messages are received prior to tsarg.

3.7.2.1 Rules for Null Messages. Null messages are used to avoid deadlock, as dis-

cussed in Chapter 2. They are sent from an LP in three cases:

1. Upon initialization, every LP sends a null message at time tyyrL = (0 +tpELAY).

9Strictly speaking, there is a unique output delay for every output arc of an LP, but for this thesis, it is assumed
all output delays on each arc are the same.
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2. When a signal is sent to another LP via an output arc at time ¢, all other output arcs are

sent a null message at time ¢.

3. When VSIM requests a signal and SPECTRUM has a valid event, it is returned to VSIM. If
there is no event ready, the receive filter checks tosee if tngg < tsare. If so, a NULL pointer
is returned and VSIM continues. Otherwise, the filter waits—or blocks—for an incoming
event. When an LP is about to block, it sends a null message at tyyrr = min((tsare +
tpeLAY ), tNEQ) to all downstream LPs. Therefore, deadlock is avoided because every LP
sends a “guarantee” that no messages are sent prior to tyyLL, and every downstream LP can

update their safe times; therefore, cyclic waiting does not occur.

3.7.3 Modifications to VSIM for Parallel Simulation. The VHDL simulation can be parti-
tioned in a number of ways. One method would be to allow each LP to share the behavior instances,
but partition the signals among the LPs. When a behavior executes, the LP determines the owner
of the resulting signal, and an event is sent to the corresponding LP. Another method—and the
one implemented in this research—is to allow the LPs to share signals, but partition the behaviors.
This way, only valid signal changes are sent to other LPs. When a signal does change, this event is
sent to all LPs with affected behaviors. The behavior list of any LP would consist of only behav-
iors “owned” by that LP. Messages are introduced into the simulation cycle as shown in Figure 18.
This cycle is the based on the sequential simulation cycle of Figure 12; however, signal changes that
affect other LPs are now sent to those LPs as events. Similarly, after local behaviors are executed
and posted, if any upstream events are forthcoming, they are posted in the active record list. Each
LP runs the same simulation, but with different data in terms of behaviors. This is known as a

single program/multiple data (SPMD) configuration (21).

A parallel simulation in a 2-LP configuration is shown in Figure 19. This Figure shows the
connectivity if each LP had signal changes that affected behaviors on the other LP. Another possible

configuration for 2-LPs could be that only one LP depended on the other, “upstream” LP.
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Figure 18. Parallel VHDL Simulation Cycle Shown for One LP

Figure 19. A 2-LP configuration
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Figure 20. Data Flow for Incoming Event

The process of receiving an event is shown in Figure 20. Incoming events are stored by
SPECTRUM in an input queue until requested by VSIM. When SPECTRUM receives events, the
input safe time is updated. When VSIM requests an event, the receive filter removes it from the
SPECTRUM queue (according the the rules for null messages in the previous section) and passes

it to VSIM. In turn, VSIM posts it in it’s local active list and continues the simulation.

The main simulation loop of VSIM must be modified to accommodate parallel operation. In
sequential operation, the simulation is complete when the active list and behavior list are both
empty. This may not be the case for parallel operation. One LP may have empty active and
behavior lists, but an upstream LP may send another active record (signal change) to be put in the
empty active list. Therefore, each LP must run until the maximum simulation time is reached, as
shown in Figure 21. In support of this change, the get_low_time() function is modified to return
the maximum time if the active list is empty. This method is correct for paraliel and sequential

operation.

35




sim_it ()
{
SIG_REC *signal;

while (*sim_time < MAXTIME) {
while (tmpbeh != NULL) {
execute_behavior(); /* execute, and post */
remove_behavior();

}
get_signal(); /* get from other LP and post */

update_sim_time(get_low_time()); /* process low time %/
while (signal = active_exists(#sim_time)) {
if (unchanged(signal)) { /* compare values */
remove_signal(signal);
}
else {
update_signal(signal);
schedule_behaviors(signal); /# including sending to other LPs #/
remove_signal(signal);
}
}
}
end_sim();

}

Figure 21. Main VSIM Simulation Loop Modified for Parallel Operation
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int 1p_own[MAX_BEHAVIORS]; /* node location of each behavior */

Figure 22. Structure Identifying LP Ownership of Each Behavior

Figure 21 is also modified to do a get_signal() after all behaviors have executed for a
given time. This function calls 1p_get_event() from SPECTRUM, converts the event into an
active record, and posts the new record into the active list. The send_signal() routine is called
from the schedule_behaviors() function. This way, as behaviors are scheduled on the local
LP, it can check to see which other LPs have behaviors dependent on the signal change. The
send_signal() function, in turn, builds an event out of the signal change and calls SPECTRUM’s

1lp_post_event ().

Because each LP must know which behaviors it owns, a few modifications to VSIM data
structures must be made. VSIM is modified to read in a mapping of behaviors to LPs, and each LP
has this information in the array shown in Figure 22. In order to generate this mapping file, the
user must determine the behavior numbers and dependencies. To do this, VSIM is run in sequential
mode with MAPPIKG defined in its header file. The corresponding output is run through a program
called vmap, which generates a list of behavior numbers, names, delays, and dependencies. The
user can then use this data to specify which behaviors are grouped to which LPs.1° The specific

LP to processor configuration is defined at run time.

Also, the signal record structure is modified to contain an “ownership” flag, as shown in
Figure 23. Since there is a one-to-one correspondence between behaviors and their signal outputs,

after behaviors are executed and the corresponding signals records are created, the ownership flag

10This procedure is currently done manually, unless a random assignment of behaviors to LPs is used.
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typedef struct {
UINT32 id;
char *name;
unsigned size: 4;
UINT32 cval;
CONNT *conns;
BOOL i_own;

} SRREC;

/*
/*
/*
/*
/*
/*
/*

signal record */

id */

name */

size of data value (bytes) */
current value (offset) */
behavioral connections */
for LP ownership */

Figure 23. Basic structure for Signal Records Modified to Identify LP Ownership

is set to TRUE for that LP. LPs are responsible to send and/or report signal changes for those signals

that they “own.”

3.8 Summary.

VHDL circuits are compiled with the Intermetrics VHDL toolset, and intermediate C code
is intercepted and transformed to run with AFIT’s parallel VHDL simulator. VSIM runs either
sequentially on a single processor, or in parallel on the Intel iPSC/2 or iPSC/860 Hypercubes. For
parallel simulations, VSIM runs over the SPECTRUM testbed. This allows various protocols to be

tested by changing filters instead of making significant modifications to VSIM. Behavioral instances

are grouped into LPs and the LPs are distributed among the Hypercube’s processors.

This chapter identified the key data structures, the simulation cycle, and the methodology

for breaking VHDL simulations into multiple LPs and running on multiple processors.
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IV. Implementation

4.1 Introduction.

This chapter describes the implementation of the postprocessor functions pbuild and plex,
and the VSIM interface to the Intel Hypercubes with SPECTRUM. Also, implementation of the
null-message protocol using SPECTRUM filters is discussed. For examples of some of the key

source code that realizes this implementation, refer to Appendix G.

4.2 Postprocessor Implementation.

As shown in Table 1, even small VHDL circuit simulations are composed of thousands or tens
of thousands of lines of C code just for circuit description, i.e., not including simulator code. Large,
flat structural descriptions lead to very large intermediate files. It is better to build structural
circuits hierarchically and use a number of intermediate configuration descriptions than to use one
overall configuration file. The multiplier in Table 1 is configured hierarchically, while the shifters
are configured as one large structural description. Even though the multiplier has three times as

many gates as the 16-bit shifter, the intermediate code is 37% smaller.

In order to decrease the amount of time required to transform this code into code compatible

with VSIM, a program called pbuild is created to automate this process.

Table 1. Length of Intermediate C Code Circuit Descriptions

[ Simulation | File Size (bytes) | Lines of Code |
SR flip-flop 32679 1304
edge-triggered D flip-flop 41063 1964
full adder 61155 2350
8-bit carry save adder 639757 26651
8-bit carry lookahead adder 569576 23106
8-bit ripple carry adder 504540 20700
8 X 8 wallace tree multiplier 564956 22032
16-bit bit/byte shifter 900307 34192
32-bit bit/byte shifter 1603124 59967
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Pbuild reads the compilation script file generated during the build phase, concatenates the C
files that make up the specific simulation, and calls plex, which transforms the data by the rules

specified by Comeau (10:4-6) and in this thesis.

The user must determine the name of the build script generated during the build phase. This
can be accomplished by adding the Intermetrics debug switch -debug=cknd to the mg and build
commands. Then, after the build phase completes, the script filename is reported. For the example
of Figure 24—a model-generate and build session for an edge-triggered D flip-flop discussed in

Appendix B.3—the compilation script is FN23309.

An example buiid script (for the edge-triggered D flip-flop) is shown in Figure 25. This script
is used to generate an executable simulation called FE23307, and located in /home/inter/shiplib
/tbreeden. This directory represents where files in the user’s work library are located. The
intermediate C files required for VSIM are the main (FN23311.c¢), and the . c files that correspond
to the .o files in the work directory. For each .o file in /home/inter/shiplib/tbreeden of
Figure 25, the corresponding . c filename is “two greater” than it’s .o file. For example, the .c file
that corresponds to FN23304.0 is FR23306.¢c. The program pbuild reads this script, recognizes the
work library’s main and object files, and concatenates the corresponding main and . ¢ files, as shown
in Figure 26. From this pcint, pbuild calls plex for data transformation. If the specific path to the
build script is not specified by the user, pbuild can determine it by getting the UNIX environment
variables VADL_LIBROOT and LOGNAME, which in this case would return /home/inter/shiplib and
tbreeden, respectively.! This works as long as models are compiled and model generated in the
user’s work directory, otherwise the user may have to specify the complete path to the build script

on the command line when invoking pbuild.

After extracting and concatenating the correct files, pbuild calls plex via the operating

system, also shown in Figure 26. The plex program was created using C and a UNIX program

1The path /home/inter/shiplib is the explicit path on lovelace in the VLSI lab. A logically equivalent path is
/usx/vhdl/shiplid, which works on any machine in the VLS] lab.
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lovelace.”/vhdl/etdff>mg ’-debug=cknd nand_gate(simple)’

Object_file : /home/inter/shiplib/tbreeden/FN23067.0

H file : /home/inter/shiplib/tbreeden/FN23068

C file : /home/inter/shiplib/tbreeden/FN23069.c

Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

lovelace.”/vhdl/etdff>mg ’-debug=cknd three_input_nand_gate(simple)’
Object_file : /home/inter/shiplib/tbreeden/FR23077.0

H file : /home/inter/shiplib/tbreeden/FN23078

C file : /home/inter/shiplib/tbreeden/FN23079.c

Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

lovelace.”/vhdl/etdff>mg ’-debug=cknd etdff(structural)’

Object_file : /home/inter/shiplib/tbreeden/FN23289.0

H file : /home/inter/shiplib/tbreeden/FN23290

C file : /home/inter/shiplib/tbreeden/FN23291.c

Standard VHDL 1076 Support Environment Version 2.1 - 1 Septemher 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

lovelace."/vhdl/etdff>mg ’-debug=cknd etdff_test_bench(structural)’
Object_file : /home/inter/shiplib/tbreeden/FN23299.0

H file : /home/inter/shiplib/tbreeden/FN23300

C file : /home/inter/shiplib/tbreeden/FN23301.c

Standard VEDL 1076 Support Environment Version 2.1 - 1 September 1980
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

lovelace.”/vhdl/etdff>mg ’—debug=cknd -top etdff_config’

Object_file : /home/inter/shiplib/tbreeden/FN23304.0

H file : /home/inter/shiplib/tbreeden/FN23305

C file : /home/inter/shiplib/tbreeden/FN23306.c

Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1980
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

lovelace.”/vhdl/etdff>build ’-debug=cknd -replace -ker=etdff etdff_config’
Kernel com file is /home/inter/shiplib/tbreeden/FN23309

Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Figure 24. Example VHDL Model-generate And Build Session for an Edge-triggered D Flip-Flop

41




#!/bin/csh
if ( $?VEDL_LIBSIM == 0 ) then

if ( ! -e /usr/local/lib/libsim.a ) then

echo NOLIB > bld_b854cnl.log
exit 1

endif

setenv VHDL_LIBSIM -lsim
else if ( ! -e $VHDL_LIBSIM ) then

echo LIBSM > bld_b68b4cnl.log

exit 2
endif
cc -g -o /home/inter/shiplib/tbreeden/FN23307 \
/home/inter/shiplib/tbreeden/FN23311.c \
/home/inter/shiplib/tbreeden/FN23304.0 \
/home/inter/shiplib/tbreeden/FR23077.0 \
/home/inter/shiplib/tbreeden/FN23067.0 \
/home/inter/shiplib/tbreeden/FN23289.0 \
/home/inter/shiplib/tbreeden/FN23299.0 \
/usr/vhdl/shiplib/std/FN240.0 \
/usr/vhdl/shiplib/std/FN236.0 \
/usr/vhdl/shiplib/std/FN225.0 \
/usr/vhdl/shiplib/std/FN26.0
$VHDL_LIBSIM -lcurses -ltermlib -lm -lc >& bld_5854cnl.log
exit $status

Figure 25. Example Compilation Script Generated During Intermetrics’ Build Phase

lovelace.”/vhdl/etdff> pbuild FN23308 etdff.c

cp /home/inter/shiplib/tbreeden/FN23306.c big_etdff.c
cat /home/inter/shiplib/tbreeden/FN23079.c >> big_etdff.
cat /home/inter/shiplib/tbreeden/FN23069.c >> big_etdff.
cat /home/inter/shiplib/tbreeden/FN23291.c >> big_etdff.
cat /home/inter/shiplib/tbreeden/FN23301.c >> big_etdf?.
cat /home/inter/shiplib/tbreeden/FN23311.c >> big_etdff.
Plex < big_etdff.c > etdff.c

Transformation in progress...

0O 00 00

Figure 26. Result of Reading Compilation Script by pbuild
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stack.c

FN23306.c
FN23079.c
FN23069.c
FN23291.c

%%gg?}ﬁ plex_routines.c

| big_etdff.c
FN23309 == pbuildc [ plex.i
(build script)

etdff.c

Figure 27. Relationships of the Postprocessor Files

called 1lex. Lex reads a specification file containing UNIX regular expressions and C routines that
are associated with the regular expressions. When lex reads the file, character patterns are matched
by the rules of the specified regular expressions, then C routines are called that manipulate the

input file. For more information on lex, see (23).

Figure 27 shows the necessary files and relationships among them for the complete postpro-
cessor. The files relate to the edge-triggered D flip-flop examples of Figures 24, 25, and 26. The user
only has to invoke pbuild, which controls the transformation process. The files plex_routines.c

and stack. c are used by plex to manipulate the data once a regular expression has been recognized.

4.2.1 Transformation Steps. Pbuild transforms the Intermetrics’ compiler-generated . ¢ files

into a single .c file that, along with the associated header files, can be transferred to the iPSC/2
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or iPSC/860 and run with VSIM. The following steps are taken to transform the intermediate C

code:?

1. The intermediate C code representing the VHDL configuration file is brought in first, and it
contains all the necessary #include directives.® Therefore, all #include directives after this

file are removed.

2. All lines containing #include fn26 or #include FN26 are deleted. The necessary header

information for VSIM simulations is combined in vsim.h, which is already on the hypercube.*

3. All remaining #include directives are changed to the proper path. For example, if the path

was /home/inter/shiplib/tbreeden/FN2858, it is changed to FN2858.

4. All lines that contain “{trace” are changed to “{”, i.e., “trace” to the end of line is deleted.

VSIM does not support tracing capabilities.

5. Each occurrence of if(trceqp) { ... } is deleted. These if statements contain code used

with Intermetrics simulator when it’s in the “trace” mode.

6. To complete the removal of trace-related statements, every line containing the strings “trace”

or “TRAREC” is deleted.

7. The last function call from the main routine is Z5xxxxxx (where xxxxxx can be any series of
numbers and letters). The statement “cv = init_cv();” is inserted before the first line in
this function. This new function call (init_cv()) is used to perform initialization functions
for the parallel simulator. In the third line of the same function the statement “sim_it():”

is added. This routine starts the simulation.

2For examples of how steps 1 through 10 are implemented, see Figures 4.4 through 4.17 of Comeau’s thesis (10).

3This is not true for structural models created hierarchically with a number of configuration descriptions. For such
models, the user must add the include directives to the ckt.c file. The files to include can be found by examining
the big-ckt . c file, or the appropriate . c files reported during the model generate phase. For more information, refer
to the User's Guide.

Previously, vsim.h was simutl.h, which is what Intermetrics uses. The header files are different, therefore the
filenames were changed to avoid confusion.
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8. The main() routine has six subroutine calls. The four in the middle are deleted. These
functions are either not supported by the current VHDL subset, or have been replaced by

init_cv() and sim_it () above.

9. The name “main()” is changed to “vhdl_main().” With VSIM, the main() routine is found
in the file vsim.c, which calls vhdl_main() if the simulation is run sequentially. If the
simulation is run in parallel, the address of a startup() routine is passed as the starting

address of each LP. From there, startup() calls vhdl_main() in the intermediate C code.

10. For getting output in the parallel environment, the name of each signal must be added to
the signal structure after it is instantiated. For every mksig() function call, mksig() either

returns a scalar or bit vector value, depending on the type of signal.

o If mksig() is assigned to a variable such as (*cd) .Zxxxxxxx, it is a scalar assignment.
On the line below the mksig string, “(*cd).PARM1 -> name = &(PARM2);” is added
where PARM1 is the Zxxxxxxx string to which mksig is being assigned. PARM2 is the first

parameter that appears in the m_signal subroutine call that is six lines below.

o If mksig() is not assigned to a scalar, then it’s a bit vector assignment. Four lines
above these assignments, the statement “lastsig = sigarr + NUM1 - NUM2;” is found,
where NUM1 and NUM2 are integer values. Add “loop_counter = NUM1 - NUM2;” below

that line. Then, after the line with the mksig string, the following statements are added:

temp_name = (char*)calloc(sizeof(PARM1) + 5, sizeof(char));
sprintf(temp_name, "%s(%d)", PARM1, loop_counter--);

(*(sigarr - 1)) -> name = temp_name;

where PARM1 is a string which appear 7 lines below as Z30000xxx . xXXXXXXXXXXXX.
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11. Needless function calls are deleted. This was recommended—but not implemented—by
Comeau since his data transformations were done by hand. Instead of deleting the calls,

he wrote “dummy” functions. The following function calls are not required and are deleted:

e close_sigdict()
e m_int_type()

e m_real_type()

e m_real_type()

e m_signal()

e pop()

e push()

® read_input()

e rmtrrec()

e rptstats()

e rpterr()

e Start_Nonarray_Comp()
e sched()

e timer()

e tpop()

12. Every behavior instance’s “function behavior” is modified to report it’s entity/architecture
name if MAPPING is defined in VSIM and the boolean variable mapping is still true. Each
of these function declarations is of the form Zxxxxxxx_xxxx(bi). Inside the function, after

local declarations, put the following:

#ifdef MAPPING
if (mapping)
printf("%s\n", Zxxxxxxx_xxxx_trcbck);
#endif

This step is also new, and an example is shown before and after in Appendix F.
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us [ \t]=*

comment (\/\*) ["\nl*\n

include #{us}include["\nl*\n

include_fn26 #{ws}include{ws}\" [F£] [Nn]26\"{ws}\n
trace \{{ws}trace[“\nl*\n

if_trcegp if{ws}\({ws}trceqp{ws}\){ws}
trc_or_trarec  [“\n]*((trace)|(TRAREC))[“\n]l#\n
main main{ws}\({ws}\){ws}[";]

Z1_call 21([0-9]1 i [a-2Z])*{uws}\ ({ws}\){us};
Z5_function 25([0-91 | [A-2])*{us}\({ws}\){ws}[";]
mksig_a \(\*cd\) [“\n] *mksig

mksig b \n{ws}lastsig{ws}=

exec \nZ([0-9] | [A-2])*_[0-9] *{ws}\(bi\)

Figure 28. Regular Expressions Required to Identify Data to be Transformed

4.2.2 Lez Descriptions of the Transformation Steps. As each regular expression is matched
in lex, the lex macros ECHO, input(), output(), and unput() are used in conjunction with a
character stack to manipulate the source code according to the rules above. The plex.1 file
contains the lex description of these rules. Figure 28 shows the regular expressions and Figure 29
shows function calls used in the lex description to translate the data. These two Figures make
up plex.l. For example, the definitions of Figure 28 show whitespace (ws) to be zero or more
blank spaces or tabs; a comment is recognized by a \#* to the end of line (taking advantage of the
intermediate C code’s one-line comments); and an include directive is defined to be a pound sign,
followed by white space, followed by the word include, to the end of line; etc. Then, the rules

in Figure 29 use these definitions to recognize parts of the code that require modification and to

implement those modifications.

The twelve steps of the postprocessor are accomplished in Figure 29 as follows:

1. Step 1. The function check_include() is called to remove the unnecessary directives.
2. Step 2. The #include fn26 directives are deleted by not echoing them to the output file.
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{comment} { lineno++; /* assumes comments on one line */

numcomments++; /* count the comments */
ECHO; /* echo comment to output */
}
{include_£n26} { lineno++; /* do nothing, i.e., delete line */
output(’\n’); /* output a newline */
num_inc_del++; /* count deleted #include fn26 */
}
{include} { check_include(); /#* evaluate and modify include directives */
}
{trace} { fix_trace(); /* {trace ... to {... */
}
{it_trceqp} { del_if_trceqp(); } /* delete if(trceqp){...} structures */
{trc_or_trarec} { lineno++; /% do nothing, i.e., delete line */
num_trc_or_trarec++;
}
{main} { do_main(); } /* adjust main function */
{Z1_call} { /* do nothing if in main, i.e., don’t ECHO */

if ('found_main) ECHO;
else Z1_calls_del++;

}
{Z5_function} { do_Z5_function(); } /* modify Z6xxxx() functions */
{mksig_a} { do_mksig_a(); } /* modify bit mksig() function calls */
{mksig_b} { do_mksig b(); /* modify bit vector mksig calls */
}
{exec} { add_mapping(); } /* add #ifdef MAPPING directive */
close_sigdict{ws}\( { del_fn_call(); } /* delete function calls... %/
m_int_type{ws}\( { del_fn_call(); }
m_real_type{ws}\( { del_fn_call(); }
m_signal{ws}\( { del_fn_call(); }
pop{ws}\( { del_fn_call(); }
push{ws}\( { del_fn_call(); }
read_input{ws}\( { del_fn_call(); }
rmtrrec{ws}\( { del_fn_call(); }
rptstats{ws}\( { del_fn_call(); }
rpterr{us}\( { del_fn_call(); }
Start_Nonarray_Comp{ws}\( { del_fn_call(); }
sched{ws}\( { del_fn_call(); }
timer{ws}\( { del_fn_call(); }
tpop{ws}\( { del_fn_call(); }
\n { lineno++;
ECHO;
}
{ ECHO; }

Figure 29. Function Calls and Actions Defined for Each Regular Expression
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Step 3. The paths of all remaining include directives are modified in check_include().

. Step 4. {trace... is changed to {... by calling the £ix_trace() function.
. Step 5. Occurrences of if (trceqp) {...} are deleted in the del_if_trceqp() routine.
. Step 6. Lines containing trace and TRAREC are deleted by not echoing them to the output

file.

. Step 7. The Zbxxxxxx() function is modified in do_Z6_function().
. Steps 8 and 9. The main function is modified by do_main().

9. Step 10. Scalar signals are modified in do_mksig_a(), and bit vector signals are modified in

10.
11.

do_mksig_b().
Step 11. All unnecessary function calls are removed by calling del_fn_call().

Step 12. Reporting of their entity/architecture name is added to behavior functions in
add_mapping().

Finally, when the intermediate C code has been completely transformed, a report is generated,

such as shown in Figure 30.

4.8 Interfacing VSIM with SPECTRUM.

SPECTRUM provides support for running concurrent processes on the Intel iPSC/2 and

iPSC/860 Hypercubes. For VSIM, the concurrent processes each run the VHDL. simulation cycle
as described in Chapter 3. The behaviors are partitioned among the processes and interprocess

communication is accomplished via calls to SPECTRUM.

4.3.1 Main SPECTRUM Functions. All functions discussed in this section are listed in

Appendix G.

4.8.1.1 Initialization. Prior to running a parallel simulation using SPECTRUM, the

number of logical processes is specified in a header file. When the simulation begins, a call to

1p_level_init() is made to establish the following:

e The LP relationships.

o The address of the starting procedure for each LP.
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Approx lines: 2710
Comments: 5
#include directives modified: 5
#include directives removed: 13
{trace... changed to {... : 28
if(trceqp) tests removed: 35
"trace'" or "TRAREC" lines removed: 223
Zixxxxxx() calls removed: 4
25xxxxxx() functions modified: 1
Scalar "mksig" assignments modified: 18
Bit vector "mksig" assignments modified: 0
#ifdef MAPPING added: 14

Other function calls removed:

close_sigdict(): 1
m_int_type(): 0
m_real_type(): 1
pop(): 21
push(): 21
read_input(): 1
rmtrrec(): 0
rptstats(): 1
rpterr(): 23
Start_Nonarray_Comp(): 0
sched(): 0
timer(): 1
tpop(): 31

Figure 30. Example Postprocessor Report
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e The addresses of any filters used by all LPs.

LP relationships are specified by the user in a 1p.arcs file. The specifications for this file are

found in the SPECTRUM user’s guide (16) and in the AFIT Parallel VHDL user’s guide (4).

The function vspec_init() builds a table of function pointers for SPECTRUM. Each func-
tion pointer represents the starting code for the simulation on each LP. For VSIM, all LPs start
with the routine startup(). Therefore, every entry in the array functions[] is loaded with the
address of startup(). Finally, a call is made to SPECTRUM’s 1p_level_init(), where SPEC-
TRUM initializes and each LP calls startup(). In turn, startup() calls the intermediate C codes

vhdl_main(), where the circuit to be simulated is configured, and the simulation begins on each

LP.

4.8.1.2 Sending Signal Changes. When VSIM identifies a signal change that is re-
quired by another LP, it uses a function calles send_signal to build an event and call SPEC-
TRUM’s 1p_post_event(). SPECTRUM sends the event to the specified LP after the send filter

performs the protocol-necessary functions, as discussed in the filter section.

4.3.1.3 Recetving Signal Changes. An LP receives a signal by making a call to SPEC-
TRUM’s 1p_get_event(). The event is then made into a signal record and posted in the active
list by a function called receive_signal(). If a null-pointer is returned from lp_get_event(),
this indicates that no event was ready to return and the local LP can safely execute without an

event from another LP. This determination is made by the receive filter.

4.3.1.4 Clock Management. VSIM and SPECTRUM each have local clocks for every
LP—both implemented as an integer. When an LP updates the VSIM clock, it passes this time to

SPECTRUM’s 1p_advance_time() to keep the clocks synchronized.?

5The SPECTRUM clock is synchronized with the VSIM clock in each LP. This does not mean that every LP has
the same time—only that the VSIM clock and the SPECTRUM clock on each LP has the same time. The LPs run
asynchronously by the rules of the null-message protocol.
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4.3.2 Implementation of SPECTRUM Filters for VSIM. The filters are used to implement
the null-message protocol for parallel simulations. The theory behind this protocol is discussed in
Chapters 2 and 3. The filters used by VSIM are based on an existing set of filters called chanclocks,
established at AFIT. The receive filter is modified for VSIM to take into consideration the two event

queues—SPECTRUM’s input event list and VSIM’s active list.

Channel times are introduced to track the safe time and the output send times. As discussed
in Chapter 3, safe time is defined as the minimum input channel time of all input arcs. Output

channel times are tracked to avoid sending null messages when they are not necessary.®

4.8.2.1 The Initialization Filter. When VSIM calls 1p_init(), an initialization filter
is used to instantiate and initialize channel times for the input and output arcs defined in the

lp.arcs file. Also, a null message is sent to every downstream LP with a time stamp of tzp_peray.

4.3.2.2 The Send Filter. When an LP sends another LP asignal, null_post_filter()
sends a null message to every other downstream LP with the same time stamp. Also, the channel

time for each output arc is updated.

4.3.2.3 The Receive Filter. The receive filter, null_get_£1tr(), is used to get events
from upstream LPs. It determines if the local LP is able to prooceed, i.e., at least one message
has been received from each upstream LP and the time of the next event in SPECTRUM’s queue
is less than the safe time. If so, the event is valid (no event will be received with an earlier time

stamp) and returned to VSIM.”

If the LP cannot return a message, it “peeks” at VSIM’s active list to get the next event time.

If this time is less than the safe time, the filter returns, causing a NULL pointer to be returned

8Since null messages are only used to avoid deadlock, if a message has been sent to another LP at time ¢, there
is no need to (possibly) send another null message 1o the same LP at time t.
"Input null messages are stripped out.
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by 1p_get_event(). When VSIM receives the NULL pointer, it proceeds without adding a new

record to the local active list.

If the receive filter cannot return a valid message and the next event time is greater than the
safe time, then the filter blocks after sending a null message to every downstream LP guaranteeing
a message is not sent any sooner. In this way, deadlock is avoided. The rule, as discussed in
Chapter 3, is an LP sends a null message to every downstream LP with a time stamp equal to

either VSIM’s next event time or the sending LP’s safe time plus output delay.

4.8.3 Termination. When an LP has completed the simulation, it builds a null message with
the maximum simulation time and sends it to all downstream nodes. Then it calls node_terminate,
which signals to the host that the LP’s simulation has completed. Ideally, a terminate filter should
be used instead of relying on the application to create and send a null message and make a node-level

function call.®

8Such a filter now exists in the latest version of SPECTRUM. VSIM uses this new version, but it does not use a
terminate filter. Modification should be relatively straightforward and simple.
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V. Results

5.1 Introduction.

In this chapter, the performance of several VHDL circuit simulations is discussed. First, three
small adders are presented: An 8-bit carry save adder, an 8-bit carry propagate adder, and an 8-bit
carry lookahead adder. Then, two larger circuits are simulated: A 16-bit bit/byte shifter and an

8 x 8 Wallace Tree multiplier with a 16-bit product.

With the exception of the 16-bit shifter, each circuit is compiled and run on both the iPSC/860
and the iPSC/2. Data is presented separately. The shifter produces a C code representation of
the configuration file that is too large to compile on the iPSC/2; therefore, only iPSC/860 data is
presented for the shifter. The largest circuit in terms of numbers of gates—the Wallace Tree—did

compile on the iPSC/2 due to the hierarchical circuit design and use of incremental configurations.

All one-LP simulations represent the entire circuit as a single process on one node. One-LP

simulations are the baseline for speedup calculations.

For performance measurements, each configuration is run 30 times and averaged. The total
time for one simulation is considered to be the maximum time of all concurrent processes. Unless
otherwise noted, all output is turned off and 20 input vectors or sets of vectors are applied to each
circuit, e.g., 20 pairs of vectors are applied to the multiplier, 20 vectors are applied to the shifter,

etc.

5.2 Program Validation.

Programs are validated by comparing them with Intermetrics’ output. The process is as

follows:

1. Run the simulation using Intermetrics’ simulator.
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TIME | SIGNAL NAMES |
I
(xs) | CIN X(7 DOWNTO 0) Y(7 DOWNTO 0) cout Z(7 DOWNTO 0)
I
o | ’0? "00000000" *00000000" 0’ 00000000"
10 | "01010101" "01001100"
16 | "*00011001"
21 *10010001"
24 | "10000001"
30 | 1 "10101010" "10110011" "*10100001"

Figure 31. Sample Intermetrics OQutput for Carry Lookahead Adder

2. Generate an Intermetrics report. Example output for a portion of the carry lookahead adder
simulation is shown in Figure 31. The circuit adds two 8-bit vectors, X and Y, along with
a carry in, CIN (see the schematic on page 66). Figure 31 shows the values 01010101 and
01001100 are applied to the adder though X and Y respectively, while CIN remains a zero.
The sum, Z, is 10100001 at 30 ns; and the carty output, COUT, remains a zero. Also, X, Y,

and CIN are givei new values to begin another addition (whose result is not shown).

3. After filtering the intermediate C code through the postprocessor and linking with VSIM,
run the simulation in sequential mode under VSIM. An example of this output for the same
portion of the carry lookahead adder is shown in Figure 32. Note the output of VSIM shows
only the bits that have changed in each bit vector. For example, at 30 ns only bit 5 of Z
has changed (from a zero to a one). This output can be directly mapped to the output of

Figure 31.
4. Sort the output from the VSIM sequential run by time and signal name, respectively.!

5. Validate this output by comparing with the Intermetrics report.

1The output is already in time order; however, this sort organizes the signals while maintaining the time order.
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16
16
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30
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30
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ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,

X(0) from 0 to 1
X(2) from 0 to 1
X(4) from 0 to 1
X(6) from O to 1
Y(2) from O to 1
Y(3) from O to 1
Y(6) from O to 1
Z(0) from O to 1
Z(3) from 0 to 1
Z2(4) from O to 1
Z(3) from 1 to O
2(7) from O to 1
CIN from 0 to 1

X(0) from 1 to O
X(1) from 0 to 1
X(2) from 1 to O
X(3) from 0 to 1
X(4) from 1 to O
X(6) from O to 1
X(6) from 1 to 0O
X(7) from O to 1
Y(0) from 0 to 1
Y(1) from 0 to 1
Y(2) from 1 to O
Y(3) from 1 to O
Y(4) from 0 to 1
Y(5) from O to 1
Y(6) from 1 to O
Y(7) from O to 1
Z(5) from 0 to 1

Figure 32. Sample VSIM Output for Carry Lookahead Adder
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6. Run the simulation in any parallel configuration, concatenate the LP output files, sort them

by time and signal name, and use diff to compare them with the validated output.

Input test vectors for the adders are taken from Comeau (10:5-15). His test vector patterns
are designed to verify the individual logic gates each act correctly for all possible inputs. For
the shifter, patterns are chosen to verify that logic 1s and Os shift left or right one or eight bits,
depending on the input control signals. Also, Os shifted in (one or eight bits) are verified. The
multiplier is tested to verify limits and various intermediate values. For example, input pairs (0,
0), (0, number), (number, 0), (0, max), (max, 0), (number, max), and (max, number), and several

combinations of (number, number) are tested and verified.

5.8 Circuit Partitioning.

No attempt is made to find the optimal circuit partitions; however, the absence or presence
of speedup is discussed for each simulation. In general, larger or more complex simulations exhibit
better speedup. Even though the presence of feedback can significantly inhibit performance in the

null message protocol, very large circuits can still achieve speedup through parallel simulation.

The full adders that make up the carry save and carry propagate adders are partitioned sym-
metrically. For eight-LP simulations, each full adder is assigned to an LP, for four-LP simulations,

two full adders are assigned to each LP, etc.

The partitioning for the carry lookahead adder is from Comeau’s research. This adder is
partitioned to avoid imposing feedback among LPs and to reduce the number of behaviors on

successive downstream LPs (10:5-2).

Due to the large number of behaviors, the 16-bit shifter and the multiplier are simulated with a
uniform random distribution of behaviors to LPs. Even though these circuits are combinational and

“feedforward,” such a distribution imposes feedback among the LPs. The results of this research
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indicate that these larger circuits can be correctly simulated; therefore, more aggressive partitioning

strategies can be investigated in the future.

5.4 Ezplanation of Charts.

For each chart, the performance of the simulation time and the total LP time are presented.
The difference is that the simulation time represents the total time for an LP to execute the core
simulation algorithm, as presented in Figure 21 on page 36. The LP time represents the total
time an LP executes, i.e., overhead is included for SPECTRUM initialization, behavior and signal

instantiation, and close-out.

All data is summarized in Appendix E.

5.5 Circuit Simulations.

5.5.1 Carry Save Adder. The 8-bit carry save adder, shown in Figure 33, is composed of
eight independent full adders. The simulation has a total of 64 behaviors. Circuit partitioning is

straightforward due to the lack of communication among the full adders.

Figure 34 shows the performance and speedup of the carry save adder for the iPSC/2. Note
that the simulation loop exhibits superlinear speedup, i.e., speedup increases greater than the num-
ber of LPs. This is due to the significantly reduced search and post times in each active list, as

well as the reduced number of behaviors executing on each LP.

In parallel simulations, each LP maintains an active list that contains signals that only affect
behaviors belonging to that LP. The total number of behavior executions, and therefore the total
number of signal records generated, is dynamic. If there are m behaviors and n signal records posted

in one circuit simulation, a sequential simulation may be bound by O(n?m) since each signal change
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X@) X(6) X(S) X(4) X@3) X(2) X(1) X(0)

Y Y(6) Y(5) Y4 A& Y(2) Y() Y(0)
7 Z(6) Z(5) Z2(4) Z3) 2(2) Z(1) Z(0)
c@ C(8) C(5) C(4) Cc@ CR) cQ) C(0)
@) S(6) $(5) S(4) $3) §(2) S(1) $(0)

Figure 33. Schematic Diagram of the 8-bit Carry Save Adder (10)

(n) corresponds to up to m behaviors executing?, which then posts the resulting signal into the

active record list in O(n) time.

If this simulation is now divided evenly between two LPs that require no communication
between them (trivially parallel), then one LP now has m’ = m/2 behaviors, and the total number
of signal records generated and posted can be estimated to be n’ = n/2. The overall execution is
then O((n')?/m’) = O(n*m/8). This means that the execution time for a trivially parallel circuit
evenly distributed between two nodes can execute as much as eight times faster as a sequential
simulation of the same circuit. Likewise, trivially parallel, balanced circuits partitioned among
four and eight nodes can execute 64 and 512 times faster, respectively. This, of course, is a very

high bound on speedup estimations because the number of generated signals is estimated, and the

2This corresponds to one time through the simulation loop. This is a very high estimation, as one signal change
rarely directly affects every component of a circuit.
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number of behaviors scheduled for execution due to one signal change is almost always significantly

less than the total number of behaviors.

Also Figure 34 shows the overall LP time for the carry save adder was never below 800ms.
Therefore, although each simulation loop was improving in performance, the overall LP time is
bounded by SPECTRUM’s initialization and close-out functions. As other simulations show, this

limitation disappears as circuit sizes and complexities increase.

For the iPSC/860, Figure 35 shows the computation times are significantly reduced as the
number of LPs is increased. Also, the total execution time is less for SPECTRUM overhead,
however, it increases with number of LPs due to increased contention for common resources, like

input files and node-to-host synchronization.

5.5.2 Carry Propagate Adder. With the 8-bit carry propagate adder of Figure 36, the carry
output of each adder is “propagated” to the next full adder. This introduces communication among
the LPs. Otherwise, partitioning is the same as that of the carry save adder. Adjacent full adders
are assigned to the same LP in order to reduce LP communications. The simulation of the carry

propagate adder consists of 57 behaviors.

For the iPSC/2, Figure 37 shows a maximum simulation-loop speedup of about 2.3 for either
two or four LP configurations. The total LP time shows a speedup of about 1.5 for four LPs. At
eight LPs, the communications overhead overcomes the computation, and no speedup is obtained.
For the iPSC/860 simulations of Figure 38, the simulation time shows a modest 1.2 speedup on
two LPs; however, the overall LP time shows no speedup whatsoever. As is the case with the
carry save adder, the carry propagate adder is too small to show much promise of speedup on the

iPSC/860—regardless of the addition of LP communication requirements.?

34Too small” can mean either a small number of components (behaviors), or a small number of test vectors, since
each contributes to greater active lists and numbers of behaviors scheduled. Therefore, if the number of input vectors
(test vectors) were increased sufficiently, the same carry propagate adder may no longer be “too small.”
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Figure 34. Performance of the Carry Save Adder on the iPSC/2
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Figure 35. Performance of the Carry Save Adder on the iPSC/860

62
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Figure 36. Schematic Diagram of the 8-bit Carry Propagate Adder (10)

5.5.83 Carry Lookahead Adder. The 8-bit carry lookahead adder is made of two 4-bit carry
lookahead adders, as shown in Figure 39. The simulation consists of 77 behaviors. For two-LP
simulations, each 4-bit adder is assigned an LP. Four- and eight-LP simulations are partitioned to
avoid imposing feedback, as well as to “front load” upstream LPs with more behaviors, as shown
in Figures 40 and 41. Partitioning is shown for only the lower 4-bit adder; however it is the same

for the upper 4-bit adder.

For carry lookahead adder simulations on the iPSC/2, shown in Figure 42, all multi-LP
simulations exhibited speedup over the one-LP simulation. The best speedup for this circuit is
2.5, which occurs for the four-LP simulations. This circuit is “larger” than the two previous
adders, and the overall LP time more closely follows the trends of the “inner” simulation times. As
circuits continue to grow, this becomes more and more apparent. On the iPSC/860, however, the
computation time of the node processors still overcomes the benefits of partitioning the circuit, as

shown in Figure 43.
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Figure 37. Performance of the Carry Propagate Adder on the iPSC/2
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Figure 38. Performance of the Carry Propagate Adder on the iPSC/860
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Figure 39. Schematic Diagram of the 8-bit Carry Lookahead Adder (10)

66




Y(3) X@) Y(2) X(2) Y(1) X(1) Y(0) X(0)

gy | oy O Y

[

qy -

2(3) Z(2) Z(1) Z(0)
Node 1 Node 0

CiN

Figure 40. Four-LP Partition of the Carry Lookahead Adder (Lower Four Bits Shown)

Y(3) X(3) ; Y{2) X(2) § Y(t) X(1) Y(0) X(0)

55“ 5 Eﬂé SVA

L
_Sj ..... L,JT

v

] @J

2@ i2(2) 0 2(0)
Node 3 ' Node2: Nodel | Node 0

Figure 41. Eight-LP Partition of the Carry Lookahead Adder (lower Four Bits Shown)
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Figure 42. Performance of the Carry Lookahead Adder on the iPSC/2
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5.5.4 Shifter. The 16-bit shifter shifts a 16-bit word either one or eight bits right or left
depending on the control inputs. The schematic diagram is shown in Figure 44. Simulation of
this shifter contains 309 behaviors. Therefore, partitioning is accomplished via a uniform random
distribution of behaviors-to-LPs. This means feedback is artificially introduced due to LP com-
munication. Therefore, performance in parallel configurations is not very promising, as shown in
Figure 45. It does demonstrate that larger simulations can be correctly simulated in parallel on

the iPSC/860.

5.5.5 Multiplier. The Wallace Tree Multiplier is the largest circuit tested. It contains 1050
behaviors. Schematic diagrams and a description of the hierarchical design are included in Ap-
pendix D. Behavior partitioning is once again random. Fortunately, the multiplier was created
with a hierarchical set of components and configuration descriptions, and the corresponding C code

is not too large for either the iPSC/2 or the iPSC/860.

Figures 46 and 47 show multiplier performance on the iPSC/2 and iPSC/860, respectively.
Both hypercubes demonstrate increasing speedup as the circuit is simulated on two and then four
LPs. This is encouraging and somewhat surprising since the random partitioning again imposes
feedback among LPs. Because of these results, greater performance improvements can be expected

for very large circuits if partitioning algorithms can be generated to avoid excess LP feedback.

5.6 Performance vs. Test Vector Quantity.

The carry lookahead adder is now modified to apply 64 pairs of input vectors instead of 20.
This corresponds to a larger initial active list, more active records, and therefore more executions
of behaviors. Figure 48 shows the corresponding speedup increases as the number of LPs increase.
The maximum cpeedup here is 6.69 for eight LPs. For the iPSC/860 of Figure 49, speedup also

improves, but the maximum is 3.75 for four LPs. These trends were similar for the other circuits.
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Figure 44. Schematic diagram of the 16-bit shifter
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When VLSI designers test their circuits with a large number of input vectors, they are likely
to automate this procedure by creating test pattern generators in VHDL. This is not what is
simulated here. The setup for VSIM “hardwires” the input signals, through VHDL source code, at
the beginning of the simulation. In this way, the active list is loaded with all input signal changes
at the beginning of the simulation. With automatic test pattern generation, a behavior is created
to periodically generate an input signal change, according to the rules specified in the VADL source
code. Therefore, these signal changes posted to the active list are done throughout the simulation,
and not all at the beginning. Automatic test pattern generation is not implemented in this research

effort.

5.7 Multitasking LPs on one Physical Processor.

The Intel 80836 processors of the iPSC/2 allow multiple processes. The carry lookahead adder
and wallace tree multiplier were simulated on one node with one, two, four, and eight LPs. Results
are shown in Figures 50 and 51, respectively. Note that speedups of slightly more than one are
achieved with two- and four-LP simulations. These speedups are even greater as the number of

input vectors are increased.

It has already been shown that one benefit of partitioning circuits is reduced active list search
and post time. Clearly in sequential simulations, performance could be improved if the active list
search and post time were reduced. This is inherently a part of the parallel simulation paradigm
for VSIM. Improving the sequential algorithm makes all parallel configurations run faster—and it
increases the challenge of achieving relative speedup through parallelization, as is the case with

using faster processors like those used in the iPSC/860.

77




memy arry Lookahead Adder

45001 iPSC/2, LPs Run on 1Node
4000 Legend
% Simulation Time

8500+ 22 Total LP Time

3000 -

2500 4

2000

1500 - ’.

%
7
'4:

1000
“‘l l E;;Z:I
2

500 -

Number of LPs

st Arry Lookahead Adder

231 iPSC/2, LPs Run on one Node

2.1 - Legend

19- / — Simulation Time
1.7 , -— Total LP Time
1.5
1.3
711
0.9 -
0.7

0.5 -

03

Number of LPs

Figure 50. Performance of the Carry Lookahead Adder with all LPs Run on One Node (iPSC/2)

78




Wallace Tree Multiplier

270000 iPSC/2, LPs Run on 1 Node
250000

230000 -
210000
190000 -
170000 -
150000
130000
110000 -

Legend
Simulation Time

B2 Total LP Time

Y
2

Wallace Tree Multiplier

23, iPSC/2, LPs Run on 1 Node
2.1 ’ Legend

194 — Simulation Time
1.7 - — Total LP Time

15 ----- Linear Speedup
18{ /
1.1
0.9
0.7
05-
0.3-
0.1

Figure 51. Performance of the Wallace Tree Multiplier with all LPs Run on One Node (iPSC/2)

79




5.8 Performance with Output Enabled.

All reported performance data is wich output turned off, i.e., signal changes are not reported.
Unfortunately, VSIM either reports all signal changes or no signal changes. Commercial simulators,

like Intermetrics VHDL, allow the user to specify which signals to report.

With output enabled, each LP writes every signal change to an 1p.out file. Since the hyper-
cube nodes share the file system with each other and the host, this means much greater simulation
time for operating system contention and file management. Execution time is significantly increased,

and file I/O overwhelms the benefits of parallelization.
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VI. Conclusions/Recommendations.

6.1 Research Summary.

Many circuit designs are too complex to be simulated with VHDL in a reasonable amount
of time. In an effort to improve VHDL’s performance, an environment is created to simulate

hierarchical structural VHDL circuits in parallel on Intel Hypercube architectures.

The output from Intermetrics VHDL compile and model generate phases is transformed into
code compatible with AFIT’s parallel simulator. The simulator can run sequentially or in parallel
on the Intel iPSC/2 and iPSC/i860. Logic gates and system behaviors are partitioned among the

processors, and signal changes are shared via event messages.

The transformation and parallel simulation tools are demonstrated using three small adders:
an 8-bit carry save, an 8-bit carry propagate, and an 8-bit carry lookahead. Two larger circuits are

also demonstrated: a 16-bit bit/byte shifter and an 8x8 wallace tree multiplier.

No attempt is made to find optimal partitioning strategies; however, speedups are obtained

for some configurations.

6.2 Conclustons.

With the parallel VHDL simulator, much research can now be accomplished with respect
to partitioning algorithms, computation/communication balancing, etc. However, the following

general observations can be made about parallel simulations of structural VHDL simulations:

o Large circuits have a better chance to ezhibit speedup. Large circuits mean more behaviors.
More behaviors mean larger active lists, which contributes to increased computation on each
LP. However, a poor partition can inhibit speedup as larger active lists also correspond to
increased communications. If feedback is imposed among LPs, a great number of null messages

are generated to avoid deadlock. Increasing communications reduces speedup.
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e Balancing computation and communication times is hardware dependent. The node proces-
sors of the iPSC/2 are Intel 80386 processors, while the iPSC/860 uses much faster 1860
processors—which corresponds to less computation time. Therefore, a good circuit partition

on the iPSC/2 may not be as effective on the iPSC/860.

o SPECTRUM overhead is not a factor in large circuil simulalions. It was noted, however,
that for small simulations, the overhead initializing SPECTRUM reduced the performance
of the overall simulation. For larger circuit simulations, SPECTRUM overhead is essentially

constant regardless of circuit size or configuration.

e Performance of all stmulations can be improved if active list management were improved. One
reason for obtaining speedup was reduced active list search and post times due to partitioning

the behaviors, and implicitly, their output signals.

The most important conclusion is large structural VHDL circuils can be simulated and run

with speedup on the Intel hypercubes.

6.8 Recommendations for Further Research.

6.3.1 Parallel Simulation Recommendations. The interesting work to be done in the future
involves experimenting with the parallel simulation protocols and partitioning algorithms. Some

suggested areas of interest are

e Try various stimulation protocols. Since SPECTRUM is now the underlying testbed, a number

of existing filters can be examined for their compatibility with VSIM.

o Create a Time Warp version of VSIM. Time Warp requires state-saving. The state of VSIM
is 1dentified by the simulation clock, the active list, and the global address space for signal
values. If the address space were more efficiently “packed,” then saving state would require

much less overhead. Currently, each signal value (‘0’ or ‘1’) is inefficiently stored in a 32-bit
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word in memory. Packing these values aids in memory reduction, but may inhibit future
enhancements to the VHDL subset—such as implementing signals as integers instead of bits,

etc.

o Determine effective partitioning siralegies. This is the subject of much research in industry
and academia. To this extent, AFIT has begun work on a VHDL graph tool that reads the
VSIM behavior numbers and relationships, and generates (among other things) behavior-to-

LP mapping files.

o Run simulations on larger parallel processors. With the automation of intermediate C code
translation and circuit partitioning, much larger circuits can be simulated. Simulating on

larger parallel processors will aid in providing more concurrency and greater speedup.

6.3.2 Improving the Postprocessor. Currently, the postprocessor expects there to be one
configuration description for each simulation. If configurations are broken into multiple, hierarchical
descriptions, then the corresponding intermediate C code is significantly smaller. On page 95 of

Appendix B, two ways to use the postprocesscr on large VHDL circuits are discussed:

e Run plex directly on each C code description generated in the model generate phase.

o Reconstruct the VHDL circuit using hierarchical configuration descriptions.

If hierarchical configuration descriptions are used, then the user must identify the include files
by examining the intermediate code before it is filtered. Automation of this function should be

included as an expansion to the postprocessor.

6.3.3 Lzpanding the VHDL subset. The two most beneficial enhancements to the subset of

circuits that VSIM can simulate are resolution functions and wait statements.

With support of resolution functions, a vast number of existing structural VHDL circuit

designs can be acquired and tested. A suggested method for adding this to the subset is
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1. Create a small circuit that uses a resolution function.

2. Extract the corresponding intermediate C code representation of the function.
3. Identify external data structures and function calls used in the code.

4. Determine if VSIM can support the intermediate representation.

5. If VSIM does not support the intermediate representation, design the necessary support

routines and/or data structures, using Intermetrics’ simulator source code as a guide.

This process can also be used to implement automatic test pattern generation and multi-valued
logic.
The first step to simulating behavioral VHDL circuits is implementation of wait statements.

A suggested method for adding wait statements is

1. Create simple processes with wait, wait for, wait on, and wait until statements.

2. Extract the corresponding intermediate C code and identify the methods and data structures

as suggested for resolution functions.

3. Using Intermetrics’ as a guide, build queues for waiting processes. If processes are allowed to
“wait on” events, then execution of events that satisfy the wait condition can schedule the

waiting processes (behaviors).

6.3.4 Other Recommendations.

6.3.4.1 Considerations for Generating Outpul. Change VSIM to report only the signal
changes specified by the user. When an Intermetrics report is generated, only the signals of interest
are reported, based on the user’s specification in a “report control language” file. When VSIM
executes with output enabled, every signal change is recorded in each LP’s output file (if the LP
“owns” the behavior that caused the signal change). Since the nodes of the Intel Hypercubes share

the same file system, this causes a significant decrease in performance when output is enabled.
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It would be beneficial to specify only the signals of interest for two reasons. First, it is how
commercial simulators handle output, as in Intermetrics’ case. Second, parallel performance with

output enabled will improve with the reduced file contention.

This can be accomplish a number of ways. For instance, Intermetrics’ report control language
procedures could be studied and emulated in VSIM. A simpler approach would be to modify VSIM
to compare each signal name with a list of signals of interest. The list could be built from a user file
at the start of the simulation. If the changing signal is in the user-specified list, then the change is
recorded in the output file and its new signal value is updated in memory. Otherwise, the change

is not recorded in the output file; however, the new signal value is still updated in memory.

6.3.4.2 Design Method for VHDL Circuits. Design circuits hierarchically, using hier-
archical configuration files. Hierarchical configurations are better for two reasons. First, as already
discussed, the corresponding intermediate C code is more likely to compile on the hypercubes with-
out running out of memory. Second, hierarchical circuit descriptions (vs. large, flat descriptions)
provide insight into possible circuit partitionings by identifying groups of functionally related com-
ponents. For example, a multiplier that uses sets of adders could be partitioned by assigning the

components that make up each adder to the same LP.
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Appendix A. Definitions

A.1 Discrete-Event Digital Simulation Definitions.

The following terms are used to discuss discrete-event digital simulation:

Component Any subsystem of a circuit that can be modeled as an entity, regardless of the level

of hierarchy. For example, an AND gate, an arithmetic/logic unit, etc.
Entity Any component in the system which requires representation in the model (2).

Event Any action that causes the simulation model to change from one state to another (15).
Typical events include the changing of any process’s state variables, the arrival of a message

at a process, or the transmission of a message from one process to another.
Message State information transmitted among processes.

Model An abstract representation of a physical system (2). There may be a number of models
for a given system. For example, a digital circuit can be modeled by a gate-level schematic

diagram, a block diagram, a dataflow graph, etc.

Process The succession of states of an entity over time (26:136). A logical process (LP) is the
model’s representation of a physical process (PP) in the system (7:198-199). It is common
to refer to an entity as a process, although, strictly speaking, there is a distinction in the

meanings.

State A collection of variables that describes the condition of an entity or system at any given

time (26:136).

System The real-world process to be modeled and simulated, e.g., an electronic circuit (2).

A.2 VHDL Definitions.

The following VHDL terms are used in this thesis:
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Architectural Body The description of the internal behavior or structure of a design entity (10:2-
11). A structural description defines an architecture by what its subcomponents are and how
the subcomponents are connected to each other (22:107). A behavioral description is used at
the lowest level of decomposition and shows how the entity transforms inputs to outputs (10:2-
11). See Figure 52 for an example of the relationships among behavioral and structural circuit

descriptions.

Block A block may be used to define a subsystem of an architecture description (20). Blocks may

be nested, and they may run concurrently.

Component The building block of hardware description, at any level of hierarchy. For example,

an AND gate, a register, a chip, or a circuit board (22:18).

Design Entity The discrete system used to model a digital device. It defines the inputs and
outputs of a hardware design and performs a well-defined function (22:10). A design entity
may represent an entire system, a sub-system, a board, a chip, a macro-cell, a logic gate, or
any level of abstraction in between (10:2-11). A design entity consists of an entity declaration

and an architectural body (22:10).

Design Hierarchy The result of successive decomposition of a design entity into components. It
also binds those components to other design entities that may be decomposed in like manner.
Taken together they represent a complete design. Such a collection of design entities is called

a design hierarchy (10:2-12).

Entity Declaration The entity declaration defines the component’s interface to the external en-

vironment; it specifies the ports of the entity in which data may flow in and out (22:18).

External Block The top-most block in a hierarchy. This block is the design entity itself, and it

defines the interface of the design entity to the external environment (10:2-12).

Inertial Delay Delay-type representing components which require the value on inputs to persist

for a given time before the component responds(22:71).
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Model The elaboration of the design hierarchy in the VHDL simulation environment. The model

is executed to simulate the behavioral or structural design of the circuit under test (10:2-12).

Port A signal that appears in the interface list of an entity declaration (10:2-12). Also, a port
is a component’s external interface, the point where data flows into and out of the compo-

nent (22:18).

Process A collection of operations applied to signals. The operations are sequential descriptions of
component behavior. Processes are said to run concurrently. Therefore, VHDL descriptions

can be thought of as a set of independent programs running in parallel (22:9).

Signal An object that holds a value and directly corresponds to some type of metal interconnection

within a circuit (10:2-12). Signals define the pathways among processes (22:9).

Transport Delay Delay-type representing an output which always occurs regardless of the time

duration of the input signals (22:71).

Note that some terms, like entity, model, and process have different meanings, depending on the
context—classical simulation or VHDL. The reader is cautioned to interpret each term with respect

to its context.
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Appendix B. AFIT Parallel VHDL User’s Guide

B.1 Owverview.

B.1.1 Introduction. When a VHDL circuit is compiled with the Intermetrics VHDL toolset,
the intermediate C code must be intercepted and transformed to be linked with AFIT’s parallel
VHDL simulator (VSIM). VSIM runs sequentially on a single processor, or in parallel on the Intel
iPSC/2 and iPSC/i860 Hypercubes. For parallel simulations, VSIM runs over SPECTRUM—a
testbed that provides an interface between user applications and the parallel processing environ-
ment. The subset of VHDL circuits that can be simulated with VSIM includes structural descrip-
tions of logic gates and simple processes.

B.1.2 Process. The process for developing and running parallel VHDL circuit simulations
is as shown in Figure 53. In general, the following steps must be taken:

Write VHDL source code to describe the circuit to be simulated.

. Compile, Model Generate, and Build using Intermetrics’ VHDL tools.

. Use the postprocessor, pbuild, to generate C code that can run with VSIM.
Compile and run the C code with VSIM on a sequential processor.

. Use vmap to generate behavior id numbers and dependencies.

1= I T S R U

. Decide on partitioning strategy and create logical process (LP) dependency file, 1px.arcs,
and behavior-to-LP mapping file, 1px.map.

7. Compile with VSIM and SPECTRUM on the Hypercube and run the simulation in parallel.

B.1.8 Related Files.

B.1.3.1 The Postprocessor. The postprocessor, called pbuild, is used to translate
Intermetrics’ C code into code compatible with VSIM. The files necessary for operation and main-
tenance of pbuild are shown in Table 2.

B.1.3.2 VSIM. The AFIT parallel VHDL simulator, VSIM, is comprised of two groups
of files. The first group, listed in Table 3, contains all of the VSIM-specific files required for
sequential operation. When the simulation is run in the sequential mode, the executable filename
is generally the name of the circuit. When the simulation is run on a parallel machine, the files
of Table 4 are also included, and the executable file called by the user is generally called “host,”
which loads each node of the hypercube with the appropriate node programs.

B.1.3.3 VMAP. VMAP is used to determine the behavior id numbers and dependen-
cies. In order to use VMAP, run the simulation in sequential mode with MAPPING defined in vsim.h.
Then run the output through the program called vmap. The files required for VMAP operation
and maintenance are shown in Table 5.

B.1.3.4 Other Files. Other files related to VSIM simulations are listed in Table 6.

These include the source code and headers for Intermetrics’ intermediate C code, LP dependency
and mapping files, output files, and some helpful scripts.
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Table 2. Files Necessary for Maintenance and Operation of the Postprocessor

[ File Description ]

pbuild Executable called by user, finds intermediate C code and
calls plex.

plex Executable called by pbuild, uses lexical analyzer and
regular expressions to find and transform intermediate C
code.

pbuild.c Source code for pbuild.

plex.] Lex description and rules for pattern matching.

plex.h Header file for plex.] and plex_routines.c.

plex_routines.c

Routines called by plex.] to transform data.

stack.c

Character stack used by plex_routines.c.

stack.h

Header file for stack.c.

Makefile

Describes sequence of commands necessary for generating
executables. The command “make” generates pbuild.
Use “make plex” to generate plex.

Table 3. Files Necessary for Maintenance and Operation of VSIM

| File Description |

vsimh  Header file for vinit.c, vsim.c, vtools.c, and vspec.c. Modeled
after Intermetrics’ simutl.h.

vinit.c Initialization routines for VSIM.

vsim.c  The main simulation loop and functions.

vtools.c  Tools provided for printing VSIM state variables and queues.
Compilation is optional—only required for maintenance
purposes.
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Table 4. Files Necessary for Maintenance and Operation of Parallel VHDL Simulations using

SPECTRUM
[ File Description ]
vspec.c Contains the functions that provide VSIM’s interface to
SPECTRUM.
viilt.c Contains the null-message protocol filters. Modeled after

AFIT’s chanclocks.c.

u.null_filt.c Table of function-pointers to filters in vfilt.c.

globals.h The standard header file for SPECTRUM. Modified to
redefine event structure.

application.h  Included by globals.h, this file contains application-specific
global information for SPECTRUM and vspec.c. Most
importantly, this file is where the number of LPs
are specified for a particular simulation.

lp_man.c Provides SPECTRUM’s LP-level functions.

cube2.c Provides hardware interface for lp_man.c.

cube2.h Header file for cube2.c and host2.c.

host2.c Host program used to load nodes and start simulation.

Table 5. Files Necessary for Maintenance and Operation of VMAP

| File Description _]

vimap Executable used to generate mapping.
vmap.c  Source code for vmap.
list.c Linked-list functions for vmap.c.

list.h Header file for list.c.
makefile Describes command sequence necessary for generation of vmap.

Table 6. Other Files

[ File Description ]
plex.log Report generated by postprocessor.
(ckt).c Postprocessor output file, named by the user when invoking

cig-(ckt).c  Big C file containing intermediate C code prior to
transforming with plex.
pbuild. This is the intermediate C code.

FN* Header files included by (ckt).c.

Ipx.out Output files for parallel simulations. For example, “Ip2.out”
corresponds to the output of LP2. In sequential simulations,
the output is sent to “stdout.”

Ipx.arcs LP dependencies and output delays, generated by the user.
lpx.map Behavior-to-LP mapping description, generated by the user.
logx SPECTRUM reports from each LP.

sgrep Script used to extract signal changes from VSIM’s output and

sort by time and signal name.
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# The following setup Intermetrics’ VHDL

set path = ($path /usr/vhdl/bin)

setenv VHDL_BIN /usr/vhdl/bin

setenv VHDL_LIBROOT /usr/vhdl/shiplib

setenv VHDL_COMMON /usr/vhdl/common

setenv VLS_HELP_FILE /usr/vhdl/common/help.txt

Figure 54. Section of .cshrc File for Setting up Intermetrics VHDL in the AFIT VLSI Lab

B.2 Implementation.

B.2.1 Introduction. This section describes how to create and run parallel VHDL simulations
with VSIM. The following section illustrates .hese steps with an example.

B.2.2 Generating VHDL Source Code. The first step is to create the VHDL circuit descrip-
tion in one or more .vhd files. VSIM can simulate structural descriptions of logic gates and other
simple processes. Circuits are created the same way as for Intermetrics’ circuits, with the following
limitations:

B.2.2.1 VHDL Source Code Limitations for VSIM. Signals can be bits or bit-vectors,
but bit-vector inputs must be described one bit at a time, e.g., Bus(0) <= ‘1’ after 10 ns;.

Processes should be one-line descriptions (Out1 <= In1 AND In2 after gate_delay;); however,
multiline processes—delimited by begin and end process may be used provided they either wait
on all signals, or the process terminates after first use, i.e., it contains a wait; statement at the
end of the process block.

It is uncertain how functions and procedures will act in VSIM. For example, functions to
describe multi-valued logic—or signal resolution—have not been tested. Their implementation
may or may not be trivial; however, the file vsim.h would most likely have to be modified to
include the proper macros and type-definitions. Intermetrics’ file, simutl.h, was used as a baseline
for vaim.h, with much of the (at the time) unnecessary data removed.

B.2.8 Setting up a User Library for Circuil Models. In order to use Intermetrics VHDL
simulator, the following environment variables must be defined in the user’s .cshrc file: VEDL_BIN,
VEDL_LIBROOT, VHDL_COMMON, and VLS_HELP_FILE. Intermetrics’ VHDL is available on in the VLSI
lab, and is in the process of being installed on aphrodite in the Parallel Simulation Lab.! The
correct environment setup for using Intermetrics VHDL in the VLSI lab is shown in Figure 54.

Once the correct environment variables are set, the user creates a work library by using
vls, define, and makelib, as shown in Figure 55.2 The commands set1ib and dir can be used
to view the current library and its contents, respectively. For the most convenience when using
the postprocessor, the user should give the work directory the same name as his or her userid
(${LOGNAME}).

1 Also, hercules on the VAX cluster has a version of Intermetrics’ VHDL simulator.
2Should the error “VMNNARKRELEASEERROR" ever be raised by Intermetrics, the only solution is to delete the
complete user directory using delete~user.
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lovelace’ vls
Standard VHEDL 1076 Support Enviromnment Version 2.1b - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

VLS>makelib -dir=/usr/vhdl/shiplib/tbreeden <<tbreeden>>
VHDVLS-I-CREATED_LIB - Library <<TBREEDEN>> successfully created.
VLS>define work <<tbreeden>>

VLS>setlib <<tbreeden>>

VEDVLS-I-DEFAULT_LIBRARY - Default library is <<TBREEDEN>>.
VLS>dir

VHDVLS-I-NO_UNITS - No unics found in <<TBREEDEN>>.

VLS>exit

lovelace¥,

Figure 55. Example Initialization o Intermetrics VHDL

B.2.4 Compiling, Model Generating, and Building. Every .vhd file is compiled individu lly
by using the command vhd12, such as

vhdl nand_gate.vhd

To “model generate” the specific entity/architecture pairs, the command mg is used; however, the
debug switch ~debug=cknd is added as so:

mg ‘-debug=cknd nand_gate(simple)’

This generates the required .c and .h files for the postprocessor. This debug switch is also used
in the “build” phase, using the command build:

build ‘-debug=cknd -replace -ker=etdff etdff_config’

In this manner, the compilation script is gencrated; then, the postprocessor can determine the
correct files and their order required for compilation.

B.2.5 [Eztracting and Transforming Intermediate C Code. In order to transform the inter-
mediate C code generated during the “model generate” phase above, type

pbuild scriptname outputname.c
where scriptname is the compilation script generated during the “build” phase, and outputname.c

is the user’s name for the transformed C file.

Finally, send the new .c file, and all the header files it includes, to the target machine for
sequential (and/or parallel) simulation. The header files are named in the top of the new .c file,
and can be found in the user’s work directory.*

3The .vhd extension is optional.
4Unless the user has compiled them into another directory through commands in the VHDL source code.
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B.2.5.1 Handling Difficult Files. When large circuit simulations are compiled under
Intermetrics, the corresponding C code generated by the postprocessor may be too large to compile
on the Intel Hypercubes. There are two methods of getting around this:

e Run plex directly on each C code description generated in the model generate phase.

¢ Reconstruct the VHDL circuit using hierarchical configuration descriptions.

If plex is run directly on each C code file, the resulting output can be compiled into separate
object files and linked together on the Hypercubes. Currently, the 16-bit shifter on the Intel 1860
is constructed in this manner. The best way to do this is to first try using pbuild directly. If this
big C file does not compile, then run plex on each intermediate C file. The “main” file—found by
examining the compilation script—can either be edited by hand, or can be pulled in from the big
C file generated by running pbuild.

When VHDL structural circuit descriptions are build hierarchically, using hierarchical con-
figuration descriptions, the size of intermediate C code resulting from model generating the overall
configuration file is significantly reduced. For example, a Wallace Tree multiplier was designed
in this manner. Even though the multiplier has about 20 times more logic gates than some other
VSIM/VHDL circuit descriptions, the amount of C code is about the same. The postprocessor does
not, however, catch all of the include directives necessary for compilation. These can be found and
inserted “by hand” by inspecting each intermediate C code representation of each configuration.

For example, here are portions of the intermediate C code for the wallace tree multiplier prior
to transformation:

/* CGF_WALLACE_TB */

#include "simutl.h”
#include "fn26"

static char Z000006B_trcbeck [J= {
60, 60, 84, 66, 82, 69, 69, 68, 69, 78, 62, 62, 67, 71, 70, 95, 87, 65, 76,
76, 65, 67, 69, 95, 84, 66, 0 };

#include "/usr/vhdl/shiplib/tbreeden/FN21712"
#include "/usr/vhdl/shiplib/tbreeden/FN21682"

/* CFG_WALLACE_TREE_2 */

#include "simutl.h"
#include "“fn26"

static char Z0000068_trcbck [1= {
60, 60, 84, 66, 82, 69, 69, 68, 69, 78, 62, 62, 67, 70, 71, 95, 87, 65, 76,
76, 65, 67, 69, 95, 84, 82, 69, 69, 95, 50, 0 };

#include "/usr/vhdl/shiplib/tbreeden/FN21682"
#include "/usr/vhdl/shiplib/tbreeden/FN21667"
#include "/usr/vhdl/shiplib/tbreeden/FN21607"
#include "/usr/vhdl/shiplib/tbreeden/FN2665"
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#include "/usr/vhdl/shiplib/tbreeden/FE21597"

/* CFG_WALLACE_TREE_1 */

#include "simutl.h"
#include "fn26"

static char 20000065_trcbck [1= {
60, 60, 84, 66, 82, 69, 69, 68, 69, 78, 62, 62, 67, 70, 71, 95, 87, 65, 76,
76, 65, 67, 69, 95, 84, 82, 69, 69, 95, 49, 0 };

#include "/usr/vhdl/shiplib/tbreeden/FN21667"
#include "/usr/vhdl/shiplib/tbreeden/FN21652"
#include "/usr/vhdl/shiplib/tbreeden/FN21622"
#include "/usr/vhdl/shiplib/tbreeden/FN2665"
#include "/usr/vhdl/shiplib/tbreeden/FN21607"
#include "/usr/vhdl/shiplib/tbreeden/FN21597"

After transformation, only the two include directives from the top of the first file are included in
the transformed file:

/* CGF_WALLACE_TB */
#include "vsim.h"
static char Z2000006B_trcbck [1= {
60, 60, 84, 66, 82, 69, 69, 68, 69, 78, 62, 62, 67, 71, 70, 95, 87, 65, 76,
76, 65, 67, 69, 95, 84, 66, O };

#include "FN21712"
#include "FN21682"

/* CFG_WALLACE_TREE_2 */

static char Z0000068_trcbeck [J= {
60, 60, 84, 66, 82, 69, 69, 68, 69, 78, 62, 62, 67, 70, 71, 95, 87, 65, 76,
76, 65, 67, 69, 95, 84, 82, 69, 69, 95, 50, 0 };

/% CFG_WALLACE_TREE_1 */
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static char 20000065_trcbeck [0= {
60, 60, 84, 66, 82, 69, 69, 68, €9, 78, 62, 62, 67, 70, 71, 95, 87, 65, 76,
76, 85, 67, 69, 95, 84, 82, 69, 69, 95, 49, 0 };

By examining the initial intermediate C code, the user can then put all of the include directives in
the top of the transformed file, as shown:

/* CGF_WALLACE_TB */
#include "vsim.h"

static char Z000006B_trcbck [1= {
60, 60, 84, 66, 82, 69, 69, 68, 69, 78, 62, 62, 67, 71, 70, 95, 87, €5, 76,
76, 65, 67, 69, 95, 84, 66, 0 };

/* Added by TAB, 2 Oct 92 */

#include "FN21712"
#include "FN21682"
#include "FE21667"
#include "FN21607"
#include "FN2665"

#include "FN21597"
#include "FN21652"
#include "FN21622"
#include "FN21637"
#include "FN2635"

#include "FN2645"

B.2.6 Running VSIM on a Sequential Machine. As is the case with Intermetrics’ simulator,
each gate is dynamically assigned a behavior number in VSIM. VSIM must first be run in sequential
mode in order to see how the behaviors are numbered. To do this, define MAPPING in vsim.h. This
way, when the simulation is run, VSIM reports which behaviors are executing and which behaviors
are consequently scheduled because of that execution, i.e., dependent behaviors.

To specify that the simulation is to be sequential, define SPARC in vsim.h or in the makefile.®
Also, if signal change output is desired, define OUTPUT in vsim.c.

Now compile vinit.c, vsim.c—and optionally vtools.c—with the intermediate C code
circuit description, and run the simulation.

5 Although the name is SPARC, sequential simulations may be compiled and run on the hypercube host or most
likely any other machine with a C compiler, if desired.

97




0 # LP index

2 # Number of input LPs

12 # LP indices of input LPs

00 # Polling frequencies of input LPs
0o # Offset of polling frequency

2 # Number of input lines

12 # LP number for each input line

2 # Number of output LPs

23 # LP indices of output LPs

2 # Number of output lines

23 # LP index for each output line
3000000 5000000 # Minimum delays for each output line

Figure 56. Example Format for One LP in an lpx.arcs File

B.2.7 Generating Partitioning Strategies. After running the sequential simulation with map-
ping turned on, the output can be run through vmap to generate a list of behaviors and dependencies.
This step is not necessarily required; vmap was created to generate an output file that can be used
in future research related to circuit partitioning strategies. If the simulator output is in the file
etdff.raw, then type

vmap etdff.raw etdff.map

to generate the mapping file, etdff.map. If a list of signal changes is desired, the script sgrep is
provided to pull out and sort the signal changes by time and signal name as so:

sgrep etdff.raw etdff.out

If desired, this data can be compared with the output of Intermetrics’ simulator in order to check
for correctness.

The user must now decide how to partition the circuit among LPs.® Once the partition is
determined, an 1px.arcs file must be created to define the LP dependencies and output delays.
SPECTRUM uses this file. Also, VSIM reads an 1px.map file created to map each behavior to an
LP. These two files must be created with great care. VSIM and SPECTRUM assume the user knows
what he/she is doing, and in most cases, they faithfully try to comply. The 1px.arcs and 1px.map
formats are shown in Figures 56 and Table 7, respectively.”

¢The scheme for distributing LPs among processors is defined at run time.

"The polling frequencies and offsets in the .arcs files are not used with the current filters, so zeroes can be
entered. If the number of input or output LPs or lines is zero, the other entries relating to those LPs or lines are
omitted. The comments shown in Figure 56 and Table 7 are not included. Although more than one input line is
permitted from each LP, communications from one LP to another in VSIM can be considered to occur on one input
line. Delays are in femptoseconds.
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Behavior LP Number
0 0

1 0
2 1
3 2

Table 7. Example Format for the lpx.map File

B.2.8 Running VSIM on a Parallel Machine. Before compiling, be sure the desired number
of LPs and the LP input file is specified in application.h. If application.h is in the user’s
~/spectrunm directory, this can be done by typing setlps x, where x is the number of LPs desired.?

Remove the MAPPING and SPARC definitions and compile the intermediate C code with vinit.c,
vsim.c, vtools.c (optional), 1p_man.c, cube2.c, u_null_filt.c, and v£ilt.c. This generates
the executable program that is loaded on the processors and represent each LP. Note that on the
iPSC/2, more than one LP may be loaded on a processor due to the multitasking capabilities of the
Intel 80386 processors. On the iPSC/i860, however, the number of LPs must match the number of
Processors.

The host program is used to load the LPs on the processors. It’s created by compiling
host2.c¢.

When the necessary files are compiled, type host. Among other things, it asks for the name
of the program to load, the number of processors desired, and the number of LPs. The number of
LPs must match the number specified in application.h. If not, the program “bails out.”

Each LP reports when it is finished running, and after every LP has completed, the host
program reports time and message statistics. If OUTPUT was defined in vsim.c and vspec.c, the
output can be found in the group of files labeled 1px.out, where x is the LP number. Timing
information can be found in logx, x again being the specific LP number. If DEBUG or REPORT is
set to ‘1’ in globals.h, the logx files report more information than humanly consumable. This
comes from lp_man.c and cube2.c. Usually, filters also have DEBUG output, but this author chose
to leave it out of vfilt.c for simplicity.

Finally, the 1px.out files can be concatenated (provided OUTPUT was defined) and sgrep can
be invoked to generate a file that can be compared with the sequential output.

B.8 Ezample: An Edge-Triggered D Flip-Flop.

B.3.1 Introduction. This section goes through an example using the edge-triggered D flip-
flop of Figure 57 on page 114. The VHDL source code is compiled and run on a SPARC station in
the AFIT VLSI lab, sequential VSIM is run on a SPARC station in the Parallel lab, and output is
compared to Intermetrics’ output. Finally, parallel simulations are executed on the Intel iPSC/2
Hypercube—one simulation with two LPs and no feedback, the other with three LPs and feedback
between two of the LPs.

All figures referenced in this example are located at the end of the document.

8The program setlps simply changes any integer in the first eight lines of application.h to the specified integer.
For more than nine LPs, the user must modify the file directly.
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B.3.2 VHDL Source Code. First, two- and three-input NAND gates are created, as shown
in Figure 58 on page 115. For this example, these entity/architecture descriptions are located in a
user file called “nand_nor.vhd.”

Next, the NAND gates are structurally connected to form the edge-triggered D flip-flop. This
description, shown in Figure 59 (page 116), is in a file called “et_dff.vhd.”

To test this circuit, a “test bench” is written to apply input signals and receive output signals.
This file, et_dff_test_bench.vhd, is shown in Figure 60 (page 117), and the schematic is shown
in Figure 61 on page 118.

The last VHDL source file is the “configuration file,” which structurally connects the compo-
nents, as shown in Figure 62. This file is called et_dff_config.vhd.

Intermetrics uses a “report control language” to generate a report of desired signal changes.
The file for this example, et_dff.rcl is shown in Figure 63.

B.3.8 Compiling, Model Generating, Building, and Simulating under Intermetrics. A script
like that of Figure 64, on page 120, can be run to compile, model generate, build, and simulate
the circuit with Intermetrics VHDL. Notice the placement of “~-debug=cknd” in the mg and build
phases. This generates the intermediate C code and build script required for the postprocessor,
pbuild.

The following is an example session using the script of Figure 64:

lovelace.~/vhdl/et_dff>et_dff

vhdl °~/vhdl/aox_gates/nand_nor.vhd
Standard VEDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

vhdl et_dff.vhd
Standard VHADL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

vhdl et_dff_test_bench.vhd
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

vhdl et_dff_config.vhd
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1980
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

mg ’-debug=cknd nand_gate(simple)’
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Object_file : /home/inter/shiplib/tbreeden/FN272.0

H file : /home/inter/shiplib/tbreeden/FN273

C file : /home/inter/shiplib/tbreeden/FN274.c

mg ’~debug=cknd three_input_nand_gate(simple)’

Standard VEDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.
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Object_file : /home/inter/shiplib/tbreeden/FN282.0

H file : /home/inter/shiplib/tbreeden/FN283

C file : /home/inter/shiplib/tbreeden/FN284.c

mg ’~debug=cknd et_dff(structural)’

Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Object_file : /home/inter/shiplib/tbreeden/FN2102.0

H tile : /home/inter/shiplib/tbreeden/FN2103

C file : /home/inter/shiplib/tbreeden/FN2104.c

mg ’-debug=cknd et_dff_test_bench(structural)’

Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1890
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Object_file : /home/inter/shiplib/tbreeden/FN2112.0

H file : /home/inter/shiplib/tbreeden/FN2113

C file : /home/inter/shiplib/tbreeden/FN2114.c

mg ’-debug=cknd -top et_dff_contfig’

Standard VEDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Object_file : /home/inter/shiplib/tbreeden/FN2i17.0

H file : /home/inter/shiplib/tbreeden/FN2118

C file : /home/inter/shiplib/tbreeden/FN2119.c

build ’-debug=cknd -replace -ker=et_dff et_dff_config’

Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Kernel com file is /home/inter/shiplib/tbreeden/FN2122

sim et_dff

Standard VEDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

SIGTRAN Signal Tracing turned on
QUIESCE Quiescent state reached with no response after 512 ns

rg et_dff et_dff.rcl
Standard VHDL 1076 Support Environment Version 2.1 -~ 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

lovelace. /vhdl/et_dff>

Here is the output from Intermetrics’ simulator—found in et_dff.rpt:°

TIME | SIGNAL NAMES

|
(ms) | A B CKT.Q_OUT CKT_Q_BAR_OUT

9The + values are delta delays and can be considered to have a delta time value of zero.
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B.3.4 Using the Postprocessor io Generate Intermediate C Code. Notice that after the
model generate phase, Intermetrics reported a “Kernel com” file, FF2122. This is the compila-
tion build script pbuild uses to build the intermediate C code: et_dff.c, as shown below. The
report shown is always written to a file called plex.log.

lovelace.“/vhdl/et_dff>pbuild FN2122 et_dff.c
cp /home/inter/shiplib/tbreeden/FN2119.c big et_dff.c
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cat /home/inter/shiplib/tbreeden/FE284.c >> big_et_dff.c
cat /home/inter/shiplib/tbreeden/FN274.c >> big_et_dff.c
cat /home/inter/shiplib/tbreeden/FN2104.c >> big_et_dff.c
cat /home/inter/shiplib/tbreeden/FN2114.c >> big_et_dff.c
cat /home/inter/shiplib/tbreeden/FN2124.c >> big_et_dff.c
plex < big_et_dff.c > et_dff.c

Transformation in progress...

Approx lines: 1964
Comments: 5
#include directives modified: 5
#include directives removed: 13
{trace... changed to {... : 12
if(trceqp) tests removed: 21
“trace" or "TRAREC" lines removed: 133
Zixxxxxx() calls removed: 4
Zbxxxxxx() functions modified: 1
Scalar "mksig" assignments modified: 10
Bit vector "mksig" assignments modified: 0
#ifdef MAPPING added: 6

Other function calls removed:

close_sigdict():
m_int_type():
m_real_type():

popQ):

push():

read_input():
rmtrrec():

rptatats():

rpterr():
Start_Nonarray_Comp():
sched():

timer():

tpop(): 31

-
= O WWere O

N
(= - Iy~

[

In addition to et_dff.c, copy all H files over to the iPSC/2.

lovelace. /vhdl/et_dff>

B.3.5 Sequential Simulation with VSIM. The intermediate C code, et_dff.c, and the
header files it includes, FR2113, Fi283, FN273, and FN2103 are now linked with VSIM and simu-
lated on a sequential machine—neptune in this example. First, MAPPING is defined in vsim.h and
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OUTPUT is defined in vsim.c and vspec.c.!® The following makefile compiles and links for either
sequential simulations (by typing make vsim) or parallel simulations (by typing make ipsc for the
iPSC/2 or make for the iPSC/i860):

# SPARC macros

S_SIMPATH=/o0lympus3/eng/tbreeden/vsim

S_CKTPATH=/0lympus3/eng/tbreeden/et_df?f

S_SPECPATH=/0lympus3/eng/tbreeden/spectrum

S_OBJS=${S_SIMPATH}/vsim.o ${S_SIMPATH}/vinit.o ${S_SIMPATH}/vtools.o \
${S_CKTPATH}/et_dff.o

S_CFLAGS=-c -w -g -DSPARC

# iPSC/2 macros

1_SIMPATH=/usr2/eng/tbreeden/vsim

I_CKTPATH=/usr2/eng/tbreeden/et_dff

MYSPECPATH=/usr2/eng/tbreeden/spectrum

UVAPATH=/usr/simulate/spectrum/uva

AFITPATH=/usr/simulate/spectrum/afit

AFIT_INC=/usr/simulate/spectrum/afit/include

FILTERPATH=${MYSPECPATH}

SPECHEADERS=${MYSPECPATH}/globals.h ${MYSPECPATH}/application.h

NODE_OBJS=${I_SIMPATH}/vsim.o ${I_SIMPATH}/vinit.o ${I_SIMPATH}/vtools.o \
${I_SIMPATH}/vspec.o ${MYSPECPATH}/lp_man.o ${MYSPECPATH}/cube2.o \
${MYSPECPATH}/u_null_filt.o ${MYSPECPATH}/vfilt.o \
${I_CKTPATH}/et_dff.o

I_CFLAGS=-c -w

# iPSC/i860 macros

I8_SIMPATH=/usr2/tbreeden/vsim

18_CKTPATH=/usr2/tbreeden/et_dff

MY8SPECPATH=/usr2/tbreeden/spectrum

UVASPATH=/usr2/tbreeden/spectrum

AFITS8PATH=/usr2/tbreeden/spectrum

AFIT8_INC=/usr2/tbreeden/spectrum

FILTERSPATH=${MYS8SPECPATH}

SPECSHEADERS=${MYSSPECPATH}/globals.h ${MY8SPECPATH}/application.h

NODE8_OBJS=${18_SIMPATH}/vsim.o ${I8_SIMPATH}/vinit.o ${I8_SIMPATH}/vtools.o \
${I8_SIMPATH}/vspec.o ${MYS8SPECPATH}/1p_man.o ${MYS8SPECPATH}/cube2.0 \
${MYS8SPECPATH}/u_null_filt.o ${MYS8SPECPATH}/vfilt.o \
${I8_CKTPATH}/et_d1f.o

1860CC=icc

# other macros
CC=cc

I iPSC/1860 —=========

10The makefile defines SPARC.
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all: host8 node8

host8: ${MYBSPECPATH}/host2.0
$(CC) -o host ${MYBSPECPATH}/host2.0 -host

node8: ${NODES_OBJS}
$(I860CC) -o et_dff ${NODES_0BJS} -node

${MYSSPECPATH}/host2.0: ${MYS8SPECPATH}/host2.c ${AFIT8_INC}/cube2.h
cd ${MYS8SPECPATH}; \
$(cC) ${I_CFLAGS} -I${AFIT8_INC} ${MYS8SPECPATH}/host2.c

${I8_SIMPATH}/vsim.o: ${18_SIMPATH}/vsim.c ${I8_SIMPATH}/vsim.h
${MYSSPECPATH}/application.h

cd ${I8_SIMPATH}; \

$(1860CC) ${I_CFLAGS} -I${MYBSPECPATH} vsim.c

${I8_SIMPATH}/vinit.o: ${I8_SIMPATH}/vinit.c ${I8_SIMPATH}/vsim.h
${MY8SPECPATH}/application.h

cd ${I8_SIMPATH}; \

$(1860CC) ${I_CFLAGS} ~I${MYSBSPECPATH} vinit.c

${I8_SIMPATE}/vtools.o: ${I8_SIMPATH}/vtools.c ${I8_SIMPATH}/vsim.h
cd ${IB_SIMPATH}; \
$(1860CC) ${I_CFLAGS} vtools.c

${18_SIMPATH}/vspec.o: ${I8_SIMPATH}/vspec.c ${I8_SIMPATH}/vsim.h
${MYSSPECPATH}/application.h

cd ${I8_SIMPATH}; \

$(1860CC) ${I_CFLAGS} -I${MYS8SPECPATH} vspec.c

${MYSSPECPATH}/1p_man.o: ${UVASPATH}/1p_man.c ${SPECSHEADERS}
cd ${MYSSPECPATH}; \
$(1860CC) ${I_CFLAGS} -I${MYS8SPECPATH} ${UVASPATH}/1p_man.c

${MYSSPECPATH}/cube2.0: ${AFITS8PATH}/cube2.c ${AFITS8PATH}/cube2.c
${SPECSHEADERS} ${AFIT8_INC}/cube2.h

cd ${MYSSPECPATH}; \

$(1860CC) ${I_CFLAGS} ${AFITS8PATH}/cube2.c

${MYS8SPECPATH}/u_null_filt.o: ${FILTERSPATH}/u_null_filt.c
${SPECSHEADERS}
cd ${MYBSPECPATH}; \
$(1860CC) ${I_CFLAGS} -I${MYS8SPECPATH}
${FILTERSPATH}/u_null_filt.c

${MYS8SPECPATH}/vfilt.o: ${FILTERSPATH}/vtilt.c ${SPECSHEADERS}

cd ${MYSSPECPATH}; \

$(1860CC) ${I_CFLAGS} -DVHDL -I${MYS8SPECPATH}
${FILTERSPATH}/vfilt.c
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${I8_CKTPATH}/et_dff.o: et_dff.c ${I8B_SIMPATH}/vsim.h
$(1860CC) ${I_CFLAGS} -I${I8_SIMPATH} et_dff.c

& mmm————- iPSC/2 --====———-
ipsc: host node

host: ${MYSPECPATH}/host2.0
$(CC) -o host ${MYSPECPATH}/host2.0 -host

node: ${NODE_OBJIS}
$(cC) -o et_dft ${NODE_OBJS} -node

${MYSPECPATH}/host2.0: ${MYSPECPATH}/host2.c ${AFIT_INC}/cube2.h
cd ${MYSPECPATH}; \
$(CC) ${I_CFLAGS} -I${AFIT_INC} ${MYSPECPATH}/host2.c

${I_SIMPATH}/vsim.o: ${I_SIMPATH}/vsim.c ${I_SIMPATH}/vsim.h
${MYSPECPATH}/application.h

cd ${I_SIMPATH}; \

$(cC) ${I_CFLAGS} -I${MYSPECPATH} vsim.c

${I_SIMPATH}/vinit.o: ${I_SIMPATH}/vinit.c ${I_SIMPATH}/vsim.h
${MYSPECPATH}/application.h

cd ${I_SIMPATH}; \

$(cC) ${I_CFLAGS} -I${MYSPECPATH} vinit.c

${I_SIMPATH}/vtools.o: ${I_SIMPATH}/vtools.c ${I_SIMPATH}/vsim.h
cd ${I_SIMPATH}; \
$(cC) ${I_CFLAGS} vtools.c

${I_SIMPATH}/vspec.o: ${I_SIMPATH}/vspec.c ${I_SIMPATH}/vsim.h
${MYSPECPATH}/application.h

cd ${I_SIMPATH}; \

$(CC) ${I_CFLAGS} -IS${MYSPECPATH} vspec.c

${MYSPECPATH}/1p_man.o: ${UVAPATH}/lp_man.c ${SPECHEADERS}
cd ${MYSPECPATH}; \
$(cC) ${I_CFLAGS} -I${MYSPECPATH} ${UVAPATH}/lp_man.c

${MYSPECPATH}/cube2.0: ${AFITPATH}/cube2.c ${AFITPATH}/cube2.c
${SPECHEADERS} ${AFIT_INC}/cube2.h
cd ${MYSPECPATH}; \
$(cC) ${I_CFLAGS} -IS{AFIT_INC} -IS{MYSPECPATH}
${AFITPATH}/cube2.c

${MYSPECPATH}/u_null_filt.o: ${FILTERPATE}/u_null_filt.c
${SPECHEADERS}
cd ${MYSPECPATH}; \
$(CcC) ${I_CFLAGS} -I${MYSPECPATH}
${FILTERPATHE}/u_null_filt.c
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${MYSPECPATH}/vfilt.o: ${FILTERPATH}/vfilt.c ${SPECHEADERS}

cd ${MYSPECPATH}; \

$(cC) ${I_CFLAGS} -DVHDL -I${MYSPECPATH}
${FILTERPATH}/vfilt.c

${I_CKTPATH}/et_dff.o: et_dff.c ${I_SIMPATH}/vsim.h
$(CC) ${I_CFLAGS} -I${I_SIMPATH} et_dff.c

S e SPARC —==-------
vsim: ${S_OBJS}
$(CC) -o et_dft -g ${S_OBJS}

${S_SIMPATH}/vsim.o: ${S_SIMPATH}/vsim.c ${S_SIMPATH}/vsim.L
cd ${S_SIMPATH}; \
$(cC) ${S_CFLAGS} -I${S_SPECPATH} vsim.c

${S_SIMPATH}/vinit.o: ${S_SIMPATH}/vinit.c ${S_SIMPATH}/vsim.h
cd ${S_SIMPATH}; \
$(CC) ${S_CFLAGS} vinit.c

${S_SIMPATH}/vtools.o: ${S_SIMPATH}/vtools.c ${S_SIMPATH}/vsim.h
cd ${S_SIMPATH}; \
$(cC) ${S_CFLAGS} vtools.c

${S_CKTPATH}/et_dft.0: et_dff.c ${S_SIMPATH}/vsim.h
$(CC) ${S_CFLAGS} -I${S_SIMPATH} et_dff.c

After compiling, a sequential simulation may be run. For this example, the command is
et_dff > temp

The output, in temp, is already in time order!!; however, sgrep sorts by time and then signal name.
The following command is typed:

sgrep temp et_dff.out

The output is now sorted by time and signal name, and can be compared with Intermetrics’ output
for accuracy. Using grep, th. values for CKT_Q_OUT are!2

3 ns, CKT_Q_OUT from O to 1
6 ns, CKT_Q_OUT from 1 to O
9 ns, CKT_Q_OUT from 0 to 1
12 ns, CKT_Q_OUT from 1 to O
156 ns, CKT_Q_OUT from O to 1

11This is not the case for parallel simulations.
12For complete accuracy, every signal change should be examined. Only one signal was shown here for brevity.
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18 ns, CKT_Q_OUT from 1 to O
21 ns, CKT_Q_OUT from O to 1
24 ns, CKT_Q_OUT from 1 to 0
206 ns, CKT_Q_OUT from O to 1
359 ns, CKT_Q_OUT from {1 to O
506 ns, CKT_Q_OUT from 0 to 1

B.3.6 Extracting Behavior Information using VMAP. Since MAPPING was defined, the out-
put in temp also has behavioral information. Specifically, behavior names, id numbers, and depen-

dencies, as shown here:

0 fs, executing beh 9: <<TBREEDEN>>ET_DFF_TEST_BENCH(STRUCTURAL)

Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add

behav 1
behav
behav
behav
behav
behav
behav
behav
behav
behav
behay
behav
behav
behav
behav
behav
behav
behav
behav
behav 2

active
active
active
active
active
active
active
active
active
active
active
active
active
active
active
active
active
active
active
active

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

=N = RN RN RN RN RN =N RN N

0 fs, executing beh 8:

Add behav 3 to active
Add behav 3 to active
Add behav 3 to active
Add behav 3 to active

0 fs, executing beh 7:
0 fs, executing beh 6:
0 s, executing beh 5:

Add behav 4 to active
Add behav 7 to active

0 1s, executing beh 4:

Add behav 5 to active
Add behav 6 to active

0 fs, executing beh 3:

Add behav 0 to active
Add behav 2 to active

0 fs, executing beh 2:

0 fs

0 s
15 ns
15 ns
20 ns
20 ns
50 ns
60 ns
150 ns
150 ns
200 ns
200 ns
300 ns
300 ns
350 ns
350 ns
450 ns
450 ns
500 ns
500 ns

list
list
list
list
list
list
list
list
list
list
list
list
list
list
list
list
list
list
list
list

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

<<TBREEDEN>>ET_DFF_TEST_BENCH(STRUCTURAL)

list at 0 fs

list at 100 ns

list at 250 ns

list at 400 ns
<<TBREEDEN>>ET_DFF(STRUCTURAL)
<<TBREEDEN>>ET_DFF(STRUCTURAL)
<<TBREEDEN>>NAND_GATE(SIMPLE)

list at 3 ns

list at 3 ns
<<TBREEDEN>>NAKD_GATE(SIMPLE)

list at 3 ns

list at 3 ns
<<TBREEDEN>>NAND_GATE(SIMPLE)

list at 3 ns

list at 3 ns

<<TBREEDEN>>THREE_INPUT_KAND_GATE(SIMPLE)
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Add behav 3 to active list at 3 ns
Add behav 5 to active list at 3 ns
0 fs, executing beh 1: <<TBREEDEN>>NAND_GATE(SIMPLE)
Add behav 0 to active list at 3 ns
Add behav 2 to active list at 3 ns
Add behav 4 to active list at 3 ns
0 fs, executing beh O: <<TBREEDEN>>NAND_GATE(SIMPLE)
Add behav 1 to active list at 3 ns

Using wmap, this information can be filtered out of temp and saved. The vmap program
attempts to “guess” the delays of each behavior, based on when dependent behaviors are scheduled.
The user is given a chance to override these guesses. In most cases, the behaviors which represent
gates show correct delays; the other “system” behaviors should be set to a delay of zero. Here is
how vmap is used for this example:

neptune: “/et_dff>vmap temp et_dff.map
Collecting behavior names and delays...

ET_DFF_TEST_BENCH(STRUCTURAL) Delay
ET_DFF(STRUCTURAL) Delay = 3000000
NAND_GATE(SIMPLE) Delay = 3000000
THREE_INPUT_NAND_GATE(SIMPLE) Delay
Change delays? y

0

3000000

ET_DFF_TEST_BENCH(STRUCTURAL) Delay
Change delay? n

"
o

ET_DFF (STRUCTURAL) Delay = 3000000
Change delay? y

Enter new delay: 0

NAND_GATE(SIMPLE) Delay = 3000000
Change delay? n

THREE_INPUT_NAND_GATE(SIMPLE) Delay
Change delay? n

3000000

ET_DFF_TEST_BENCH(STRUCTURAL) Delay
ET_DFF(STRUCTURAL) Delay = 0
NAND_GATE(SIMPLE) Delay = 3
THREE_INPUT_NAND_GATE(SIMPLE) Delay
Change delays? n

1]
(=]

3000000

Output written to et_dff.map

neptune:~/et_dff> more et_dff.map
9 ET_DFF_TEST_BENCH(STRUCTURAL) 0 1 2
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ET_DFF_TEST_BENCH(STRUCTURAL) 0 3
ET_DFF(STRUCTURAL) 0

ET_DFF(STRUCTURAL) O

NAND_GATE(SIMPLE) 3000000 4 7
NAND_GATE(SIMPLE) 3000000 5 6
NAND_GATE(SIMPLE) 3000000 0 2
THREE_INPUT_NAND_GATE(SIMPLE) 3000000 3 5
NAND_GATE(SIMPLE) 3000000 0 2 4
NAND_GATE(SIMPLE) 3000000 1

neptune: “/et_dff>

O = NDNWhPhNONO®

The format for et_dff.out, shown above, is
{behavior_id behavior_name delay {dependent_behaviors}o4 newline};4
Currently, the only way to map behavior numbers to behaviors is to compare the output of
either VSIM or vmap to the schematic. For the edge-triggered D flip-flop, this is shown in Figure 65
on page 120.

B.8.7 Generating .arcs and .map Files for Partilioning.

B.3.7.1 A 1-LP Configuratio.n The whole circuit can be simulated as one LP. This
configuration can be used to compare timing data, etc., with other configurations. An 1x1.map file
is not required; however, an 1p1.arcs file is required and is written as so:

©OCO0OO0OO0OO0

B.3.7.2 A 2-LP Confguration. The first configuration to be tested has 2 LPs. LP0
contains behaviors 0, 1, 2, 3, 8, and 9. LP1 contains behaviors 4, 5, 6, and 7. See Figure 66 on
page 121. The arcs file that SPECTRUM uses is 1p2.arcs, and it contains the following mapping:

e =000

3000000
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O O+ OOOo

The map file is for VSIM to identify which LPs “own” which behaviors. VSIM always expects this
filename to be “lpx.map”, where the number of LPs replaces x. Therefore, 1p2.map is written as
follows:

C VN ANL WO
O O+ i OO0 OO0

B.3.7.8 A 3-LP Configuration with Feedback. This configuration, shown in Figure 67
(page 121), is used to demonstrate VSIMs capability to handle feedback among LPs. The .arcs
file is 1p3.arcs, and contains the following:

N

0
0
0
2
1
2
1
3

000000 3000000

O ON

N =N, ONOOONR
N

3000000
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O O =

oS, ONOOONMNN
(¥

3000000

Then, 1p3.map is written as follows:

© 0NN PP WO
QO NMNHKLOOOO

B.3.8 Parallel Simulation. Prior to simulating in parallel, MAPPING is turned off in vsim.h.
This is not a requirement, but mapping information is no longer needed. Prior to changing the
number of LPs for any simulation, application.h is modified, using setlps, to define NUM_PROCS
and INPUT_ARCS, the number of LPs and the .arcs filename, respectively. The intermediate C
code, its header files, and the 1px.arcs and 1px.map files are sent to the hypercube and compiled
each time the number of LPs is changed.

B.3.8.1 Simulating the Edge-Triggered D Flip-Flop as one LP. The number of LPs
is set to 1 and the same makefile is used (this time typing “make”) to compile. The simulation is
started by typing host. Here is an example:

c386 8:host

Which application do you want to use?:et_dff

Enter the command line arguments for the program

>

Is assignment of logical processes to nodes to be from a file? (y/n) -> n
How many cube nodes do you want to use?:1i

How many LP’s are in this application?:1

Do you want to use the ’natural’ node assignment? (y/n): y
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Getting cube of size 1 - stand by.

load -K -p 0 O et_diftf

startcube

Cube Loaded

LAST_TIME message from LP 0 on node 0, pid 0.

End stats messages:

LP 0 (node 0, pid 0): O received, 0 sent.

Max message count set at 10, Max messages removed was 0.
HOST: Total CPU time waiting: 0.000000 (msecs)

HOST: Wall clock time loading cube: 7 (secs)

HOST: Wall clock time waiting: 4 (secs)

c386 9:

Now, the output is found in 1pi.out and can be compared to etdff.out, which the previously
verified output. Also, an LP report file, 10g0 is generated by SPECTRUM with the following
information:

LP 0 wall time taken is 4.194 (secs)
LP O messages received 0
LP O messages sent 0

B.3.8.2 Simulating the Edge-Triggered D Flip-Flop as more than one LP. The process
is the same as for one LP; however, the output is combined in the 1px.out files. For example, the
two LP configuration’s output is found in 1p0.out and 1p1.out. These two files are concatenated
and sgrep is used to sort them. The output from sgrep is verified against et_dff.out. The results
of all 1, 2, and 3 LP configurations are shown in Table 8.1314

B.3.9 Summary. This guide demonstrates how to compile a VHDL circuit with the Inter-
metrics VHDL toolset, intercept the intermediate C code, and compile and link with AFIT’s parallel
VHDL simulator (VSIM). VSIM simulations of an edge-triggered D flip-flop are demonstrated for
a single processor and in parallel on the Intel iPSC/2 Hypercube.

13 These results were run one time for each configuration, and are for comparison purposes. If statistics are required,
more runs would have to be made.
14For the 3 LP/2 node configuration, LPO was loaded on node 0, and LPs 1 and 2 were loaded on node 1.
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entity NAND_GATE is
generic (gate_delay: TIME := 3 ms);
port (IN_1,IN_2: in BIT := ’0’;
OUT_1: out BIT := ’0’);
end NAND_GATE;

architecture SIMPLE of NAND_GATE is

begin
OUT_1 <= IN_1 nand IN_2 after gate_delay ;
end SINMPLE ;

entity THREE_INPUT_NAND_GATE is
generic (gate_delay: TIME := 3 ns);
port (IN_1,IN_2,IN_3: in BIT := ’0’;
OUT_1: out BIT := ’0°);
end THREE_INPUT_NAND_GATE;

architecture SIMPLE of THREE_INPUT_NARD_GATE is

begin
OUT_1 <= not (IN_1 and IN_2 and IN_3)
after gate_delay ;
end SIMPLE ;

Figure 58. VHDL Descriptions of Two- and Three-Input NAND Gates
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-- Lt T. Andy Breeden, GCE-92D, 4 Aug 92
-- Edge-Triggered D Flip-Flop (structural)

entity ET_DFF is

port (D,CP: in Bit;
Q: out Bit;
Q_Bar: out Bit);
begin
end ET_DFF;

architecture Structural of ET_DFF is

component A_NAND Gate
port (In_1i, In_2: in Bit;
Out_1: out Bit);
end component;

component A_3Input_NAND_Gate
port (In_1, In_2, In_3: in Bit; Out_1: Out Bit);
end component;

signal Xi_Out, X2_Out, X3_Out, X4_Out: Bit;
signal X5_Out, X6_Out: Bit;

begin
X1: A_NAND_Gate port map (X4_Out,X2_Out,X1_Out);
X2: A_NAND_Gate port map (X1_Out,CP,X2_Out);
X3: A_3Input_NAND_Gate port map (X2_Out,CP,X4_Out,X3_Out);
X4: A_NAND_Gate port map (X3_Out,D,X4_Out);
X5: A_NAND_Gate port map (X2_Out,X6_Out,X5_Out);
X6: A_NAND_Gate port map (X5_Out,X3_Out,X6_Out);
Q <= X5_0ut;
Q_Bar <= X6_0ut;
end Structural;

Figure 59. Structural VADL Description of Edge-triggered D Flip-flop
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-~ Test Bench for Edge-Triggered D Flip-Flop
-- Lt T. Andy Breeden, GCE-92D, 4 Aug 92

entity ET_DFF_Test_Bench is
end ET_DFF_Test_Bench;

architecture Structural of ET_DFF_Test_Bench is
component Test_Circuit
port (D,CP: in Bit;
Q,Q_Bar: out Bit);
end component;
signal a,b,Ckt_Q_Out,Ckt_Q_Bar_Out: Bit;

begin

Circuit: Test_Circuit port map (a, b,
Ckt_Q_Out, Ckt_Q_Bar_Out);

a <= ’0’ after 0 ns, ’1’ after 100 ns,
0’ after 250 ns, ’1’ after 400 ns;

b <= ’0’ after O ns, ’1’ after 15 ns, ’0’ after 20 ns,
’1’ after 50 ns, ’0’ after 150 ns, ’1’ after 200 nms,
’0’ after 300 ns, ’1’ after 350 ns, ’0’ after 450 ns,
1’ after 500 ns;

end Structural;

Figure 60. VHDL Description of Test Bench for Edge-triggered D Flip-flop
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Figure 61. Schematic of Test Bench for Edge-triggered D Flip-flop
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-- Contiguration file to connect Edge-Triggered
-- DFF to test bench.

--= Lt T. Andy Breeden, GCE-92D, 4 Aug 82

Library work;
use work.all;
configuration ET_DFF_Config of ET_DFF_Test_Bench is
for Structural
for Circuit: Test_Circuit
use entity work.ET_DFF(Structural);
for Structural
for all: A_NAND_Gate
use entity work.NAND_GATE(Simple);
end for;
for all: A_3Input_NAND_Gate
use entity work.Three_Input_NAND_Gate(Simple);
end for;
end for;
end for;
end for;
end ET_DFF_Config;

Figure 62. VHDL Description of Configuration File for Edge-triggered D Flip-flop

-— Output for Edge-Triggered DFF simulation using
-~ Intermetrics’ Report Control Language (RCL)

-- Lt T. Andy Breeden, GCE-92-D, 4 Aug 92

simulation_report ET_DFF_Sim is

begin
select_signal: a,b,Ckt_Q_Out,Ckt_Q_Bar_Out;
sample_signals by_event in ns;

end;

Figure 63. VHDL Report Description for Edge-triggered D Flip-Flop
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#!/bin/csh -v

vhdl “/vhdl/aox_gates/nand_nor

vhdl et_dff.vhd

vhdl et_dff_test_bench

vhdl et_dff_config

mg ’~debug=cknd nand_gate(simple)’

mg ’-debug=cknd three_input_nand_gate(simple)’
mg ’-debug=cknd et_dff(structural)’

mg ’-debug=cknd et_dff_test_bench(structural)’
mg ’-debug=cknd -top et_dff_config’

build ’-debug=cknd -replace -ker=et_dff et_dff config’
sim et_dff

rg et_dff et_dff.rcl

Figure 64. Shell Script for Compiling, Model Generating, Building, and Simulating the Edge-
triggered D Flip-flop using Intermetrics’ Simulator

Figure 65. Edge-Triggered D Flip-flop Labeled with Behavior Id Numbers
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Figure 66. Edge-Triggered D Flip-flop Partitioned Into 2 LPs

Figure 67. Edge-Triggered D Flip-flop Partitioned Into 3 LPs
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Appendix C. Subset of VHDL Source Code for Parallel Simulation

The subset of circuits that can be simulated with VSIM includes hierarchical structural de-
scriptions of logic gates. This appendix discusses the subset and syntax for logic gates, structural

connections, the test bench, and configurations.

C.1 Logic Gales.

Logic gates are designed as entity/architecture pairs. Input and output signals for logic gates
must be of type Bit. The number of inputs and outputs is not restricted. Default values may be
assigned. Gate delays are of type time, and may be constants or generics. Processes may use wait
statements only if they wait on all inputs. Logical operators and, or, nand, nor, and xor may be
used. The adding operator (+) may be used to add values of type time. Here are some examples

of acceptable logic gate descriptions:

entity AND_GATE is
generic (gate_delay: TIME := 3 ns);
port (IN_1,IN_2: in BIT := ’0’;
OUT_1: out BIT := *0’);
end AND_GATE;

architecture SIMPLE of AND_GATE is
begin

OUT_1 <= IN_1 and IN_2 after gate_delay ;
end SIMPLE ;

Entity THREE_IKPUT_AND is
Port (in_1, in_2, in_3 : im BIT := ’0’; out_1 : out BIT := ’0’);
Constant Delay : Time := 5 ns;

end THREE_INPUT_AND;

Architecture BEHAV_3AND of THREE_INPUT_AND is

begin

process begin
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OUT_1 <= IN_1 and IN_2 and IN_3 after delay;
wvait on IN_1, IN_2, IN_3;
end process;
end BEHAV_3AND;

entity GND_BOX is
Port (GZ : Out Bit );
end GND_BOX;

architecture BEHAVIORAL of GND_BOX is
begin

GZ <= ’0’;
end BEHAVIORAL;

C.2 Structural Connection of Logic Gales.

Circuits are built hierarchically in entity/architecture pairs by structurally connecting logic
gate components or other structural descriptions. Assertions can be raised at this point. An
assertion of type error or fatal will abort the simulation. Component port maps use either
named or positional notation for signal assignments. Bit vectors may also be used. Here is an

example of an SR flip-flop that structurally connects two nor gates:

entity SRFF is

port (S,R: in Bit;
Q: out Bit;
Q_Bar: out Bit);
begin
SRFF_Constraint_Check:
assert not (S=’1’ and R=’1’)
report "Both S and R equal to ’1’"
severity Error;
end SRFF;

architecture Structural of SRFF is

component A_NOR_Gate
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port (In_1, In_2: in Bit; Out_1: out Bit);
end component;

signal Q_Bar_In: Bit;
signal Q_In: Bit;

begin
X1: A_NOR_Gate port map (R,Q_Bar_In,Q_In);
X2: A_NOR_Gate port map (Q_In,S,Q_Bar_In);
Q <= Q_In;
Q_Bar <= Q_Bar_In;

end Structural;

This carry save adder shows positional notation, use of bit vectors, and structural connections

of both gates (inverters) and full adders which are structurally defined elsewhere:

entity CSA8 is

Port ( A :In Bit_VECTOR (7 downto
B:In Bit_VECTOR (7 downto
C:1In Bit_VECTOR (7 downto

HI_CSA_BIT : In Bit := 0°;
LO_CSA_BIT : In Bit := ’0’;
CARRY : Out Bit_VECTOR (7 downto
HI_SUM_BIT : Out Bit := ’0’;
LO_SUM_BIT : Out Bit := ?0?’;
SUM : Out Bit_VECTOR (7 downto
end CSA8;

architecture SCHEMATIC of CSA8 is

component INV_1
Port (In_1 : In Bit := 20’
Out_1 : Out Bit := 0’ );
end component;

component FULL_ADDER

Port (AIN : In Bit := ’0’;
BIN : In Bit := 20’;
CI¥ : In Bit := ’0’;
CARRY : Out Bit := '0°;

SUM : Out Bit := 0’ );
end component;
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begin

I.9 : INV_1
Port Map ( In_1=>N_2, Out_1=>LO_SUM_BIT );
I_10 : INV_1
Port Map ( In_1=>A(0), Out_1=>N_2 );
I_11 : IRV_1
Port Map ( In_1=>N_1, Out_1=>HI_SUM_BIT );
I_12 : INV_1
Port Map ( In_1=>C(7), Out_1=>8_1 );
I_1 : FULL_ADDER
Port Map ( AIN=>HI_CSA_BIT, BIN=>B(7), CIN=>C(8), CARRY=>CARRY(7),
SUM=>SUM(7) );
I_2 : FULL_ADDER
Port Map ( AIN=>A(7), BIN=>B(8), CIN=>C(5), CARRY=>CARRY(6),
SUM=>SUM(8) );
I_3 : FULL_ADDER
Port Map ( AIN=>A(8), BIN=>B(5), CIN=>C(4), CARRY=>CARRY(S),
SUM=>SUNM(5) );
I1_4 : FULL_ADDER
Port Map ( AIN=>A(5), BIN=>B(4), CIN=>C(3), CARRY=>CARRY(4),
SUM=>SUM(4) );
I_5 : FULL_ADDER
Port Map ( AIN=>A(4), BIN=>B(3), CIN=>C(2), CARRY=>CARRY(3),
SUM=>SUM(3) );
1_6 : FULL_ADDER
Port Map ( AIN=>A(3), BIN=>B(2), CIN=>C(1), CARRY=>CARRY(2),
SUM=>SUM(2) );
I_7 : FULL_ADDER
Port Map ( AIN=>A(2), BIN=>B(1), CIN=>C(0), CARRY=>CARRY(1),
SUM=>SUM(1) );
I_8 : FULL_ADDER
Port Map ( AIN=>A(1), BIN=>B(0), CIN=>LO_CSA_BIT, CARRY=>CARRY(0),
SUM=>SUM(0) );
end SCHEMATIC;

C.3 Test Bench and Input Vectors.

Test benches are used to connect the circuit under test to a series of input test signals. The
inputs may be of type bit or bit_vector; however, each bit of a bit vector must be assigned values
individually. VSIM terminates after 2000 ns; therefore, no input signal should be assigned a value

beyond 2000 ns. Here is an example of a test bench for the 16-bit bit/byte shifter:
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entity Shifter_TB is
end Shifter_TB;

architecture Structural of Shifter_TB is

component Test_Circuit
Port ( SHIFTER_CONTROL : In Bit_Vector (2 downto 0);
SHIFTER_INPUT : In Bit_Vector (15 downto 0);
SHIFTER_OUTPUT : Out Bit_Vector (15 downto 0) );
end component;

signal Control: Bit_Vector(2 downto 0);
signal Input: Bit_Vector(15 downto 0);
signal Output: Bit_Vector(15 downto 0);

begin
Circuit: Test_Circuit port map (Control, Input, Output);

-- Use Input = 0101010101010101 after 10 ns, then
- 0000111100001111 after 250 ns,

Input(0) <= ’1’ after 10 ns, ’1’ after 250 mns;
Input(1) <= ’0’ after 10 ns, ’1’ after 250 ns;
Input(2) <= ’1’ after 10 ns, ’1’ after 250 ns;
Input(3) <= ’0’ after 10 ns, ’1’ after 250 ns;
Input(4) <= ’1* after 10 ns, *0’ after 250 ns;
Input(5) <= 0’ atter 10 ns, ’0’ after 250 ns;
Input(6) <= ’1’ after 10 ns, ’0’ after 250 ns;
Input(7) <= ’0’ atter 10 ns, ’0’ after 250 ns;
Input(8) <= ’1’ after 10 ns, ’1’ after 250 ns;
Input(9) <= *0’ after 10 mns, ’1’ after 250 =ms;
Input(10) <= ’1’ after 10 ns, ’1’ after 250 ns;
Input(11) <= 0’ after 10 ns, ’1’ after 250 mns;
Input(12) <= 1’ after 10 ns, ’0’ after 250 ns;
Input(13) <= ’0’ after 10 ns, ’0’ after 250 ns;
Input(14) <= ’1’ after 10 ns, ’0’ after 250 ns;
Input(16) <= ’0’ after 10 ns, ’0’ after 250 ns;

=—= Check left shift, right shift,
-—- left shift 8, right shift 8, pass
Control(0) <= ’1’ after 20 ns, ’0’ after 50 ns,

’1’ after 100 ns, ' after 160 ns, ’0’ after 200 ns,

’4{’ after 300 ns, 'O’ after 350 ns,

’1’ after 400 ns, ’ after 450 ns, ’0’ after 500 ns;
Control(1) <= ’0’ after 20 ns, ’1’ after 50 ns,

1’ after 100 ns, °’ after 150 ns, ’0’ after 200 ns,

0’ after 300 ns, ’1’ after 350 ns,

’1’ after 400 ns, ' after 450 ns, ’0’ after 500 ns;
Control(2) <= ’0’ after 20 ns, ‘0’ after 50 ns,

’0’ after 100 ns, ’ after 150 ns, ’0’ after 200 mns,
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’0’ after 300 ns, ’0’ after 350 ns,
0’ after 400 ns, ’ after 450 ns, 0’ after 500 ns;

end Structural;

C.4 Configuration Descriptions.

Configuration specifications are used to bind component instances to design entities. Con-
figurations may either be assigned all at once at the top level, or at each intermediate step in
hierarchical fashion. The latter saves a great deal of file space with respect to the intermediate C
code; this increases the chances that large circuits will compile on the hypercubes without running

out of memory.

The following is an example of a single top-level configuration for the carry lookahead adder:

use WORK.TEST_CL_ADDER;

Configuration S_CONF_CLA of TEST_CL_ADDER is
for INSTANTIATE_CL_ADDER
for CLA : CARRY_LOOKAEEAD_ADDER
use Entity WORK.CARRY_LOOKAHEAD_ADDER(STRUCT_CLA);
for STRUCT_CLA
for all : AND_GATE
use Entity WORK.AND_GATE(SIMPLE);
end for;
for all : THREE_INPUT_AND
use Entity WORK.THREE_INPUT_AND(BEHAV_3AND);
end for;
for all : FOUR_INPUT_AND
use Entity WORK.FOUR_INPUT_AND(BERAV_4AND);
end for;
for all : FIVE_INPUT_AND
use Entity WORK.FIVE_INPUT_AND(BEHAV_5AND);
end for;
for all : OR_GATE
use Entity WORK.OR_GATE(SIMPLE);
end for;
for all : THREE_INPUT_OR
use Entity WORK.THREE_INPUT_OR(BEHAV_30R);
end for;
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for all : FOUR_INPUT_OR
use Entity WORK.FOUR_INPUT_OR(BEHAV_40R);

end for;

for all : FIVE_INPUT_OR
use Entity WORK.FIVE_INPUT_OR(BEHAV_G50R);

end for;

for all : XOR_GATE
use Entity WORK.XOR_GATE(SIMPLE);

end for;

end for;
end for;
end for;
end S_CONF_CLA;

The wallace tree is an example of using hierarchical configurations. First, full adders are
configured with logic gates, then carry save adders are configured with full adders (and more
inverters), etc. While this method has the benefit of smaller intermediate C code, the postprocessor
output must be modified as explained on page 95 of Appendix B. Here are the wallace tree

configuration descriptions:

contiguration CFG_FULL_ADDER of Work.FULL_ADDER is

for SCHEMATIC
for I_1, I_2, INV_1CARRY, INV_1A, INV_1B, IRV_1C: INV_i1
use entity WORK.Inv(Simple);
end for;
for NANDBC, NANDCARRY, NANDAC, NANDSUM, NANDAB: NAND_2
use entity WORK.Nand_Gate(Simple);
end for;
for NAND3CARRY, NAND3OR, NAND3ABC: NAND_3
use entity WORK.Three_Input_Kand_Gate(Simple);
end for;
end for;

end CFG_FULL_ADDER;
configuration CFG_CSA8 of Work.CSA8 is
for SCHEMATIC
for I_9, I_10, I_11, I_12: INV_1

use entity WORK.Inv(Simple);
end for;
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for I_1, I_2, I_3, I_4, I_5, I_6, I_7, I_8: FULL_ADDER
use configuration WORK.CFG_FULL_ADDER;
end for;
end for;

end CFG_CSAS;
configuration CFG_WALLACE_TREE_1 of Work.WALLACE_TREE_1 is

for SCHEMATIC
for I_17, I_18, I_19, I_20, I_21, I_22, I_23: GND_BOX
use entity WORK.Gnd_Box(Behavioral);
end for;
for I_11, I_12: FULL_ADDER
use configuration WORK.CFG_FULL_ADDER;
end for;
for I_15, I_16, I_13, I_14, 1I_8, I_9: INV_1
use entity WORK.Inv(Simple);
end for;
for 1.6, I_4, 1.6, 1I_2, I_3: CSA8
use configuration WORK.CFG_CSA8;
end for;
for I_1: MCAND_GEN
use configuration WORK.CFG_MCAND_GEN;
end for;
end for;

end CFG_WALLACE_TREE_1;
configuration CFG_WALLACE_TREE_2 of Work.WALLACE_TREE_ 2 is

for SCHEMATIC
for 1_26, I_27, I_25: GND_BOX
use entity WORK.GND_BOX(Behavioral);
end for;
for I_21, I_22: INV_1
use entity WORK.Inv(Simple);
end for;
for I1.23, I_24, I_20, I 9, I_10, I_14, I 6, I_12, I_ 13, I_14, I_15,
I_16, I_17, I.18, 1.19, I_1, I_2, I.3, I_4, I_5: FULL_ADDER
use configuration WORK.CFG_FULL_ADDER;
end for;
for I_8: WALLACE_TREE_1
use configuration WORK.CFG_WALLACE_TREE_1;
end for;
end for;

end CFG_WALLACE_TREE_2;

configuration CGF_Wallace_ TB of Work.Wallace_TB is
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for Structural
for Circuit: Test_Circuit
use configuration work.CFG_WALLACE_TREE_2;
end for;
end for;

end CGF_Wallace_TB;
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Appendix D. Design of the Wallace Tree Multiplier

The wallace tree multiplier is the largest circuit simulated with VSIM on the Intel Hypercubes.
It is created and verified in MVL-7 logic using Synopsis design tools. For AFIT VSIM simulations,

MVL-7 bits and bit vectors are changed to type bit and bit_vector.

The hierarchical design of the multiplier has two advantages. First, the corresponding inter-
mediate C code from Intermetrics’ compiler is smaller than intermediate C code for an equivalent
large, flat circuit description. Second, breaking the multiplier into hierarchical components pro-

vides logical, concurrent subcomponents that may be partitioned among the nodes of a parallel

computer.

The design is taken from Hwang and Briggs (19). Figure 68 shows the multiplier as a tree
of carry save adders followed by a carry propagate adder. Two eight bit numbers, A and B, are
fed into a multiplicand generator which generates intermediate results and shifts them accordingly.
These results go through the series of carry save adders, and then the carry propagate adder where

the twelve bit product, P, is generated.

The VHDL hierarchy is shown in Figure 69. The overall circuit, wallace_tree_2, consists of
wallace_tree_1 and a set of full adders that make the carry propagate adder. The wallace_tree_1
description includes the multiplicand generator and the carry save adders. In turn, the carry save

adders are made with full adders. All full adders are composed of nand gates and inverters.

The schematics for all components are as follows: wallace_tree.2 is shown in Figure 70, wal-
lace_tree_1 is shown in Figure 71, the multiplicand generator and two “subgenerators” are shown

in Figures 72 and 73, the carry save adder is shown in Figure 74, and the full adder is shown in

Figure 75.
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Figure 68. Wallace Tree Multiplier

Figure 69. Hierarchy of VHDL Source Code for the Wallace Tree Multiplier
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Appendix E. Summary of Performance Data

Each simulation configuration is summarized in Tables 9 and 10. The times reported corre-
spond to the average execution time of 30 simulations per configuration. The reported speedups
correspond to the simulation time of the slowest LP, neglecting the overhead of initializing and
closing each process. For example, if a two-LP simulation is run and LPO reports a time of 50ns
while LP1 reports a time of 53ns, the time for the simulation is considered to be 53ns. Speedups

are related to one LP simulations of otherwise identical configurations.
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Appendix F. New Postprocessor Steps

The postprocessor modifies the intermediate C code using the 10 steps Comeau described in
his thesis (10), as well as two new steps. The first new step is to delete the following unnecessary

function calls:

e close_sigdict()
e m_int_type()

e m_real_type()

e m_real_type()

e m_signal()

s pop()

e push()

e read_input()

e rmtrrec()

e rptstats()

e rpterr()

e Start_Nonarray_Comp()
e sched()

e timer()

e tpop()

The second new step is to modify every behavior instance’s “function behavior” to report it’s
entity/architecture name if MAPPING is defined in VSIM and the boolean variable mapping is true.
Each of these function declarations is of the form Zxxxxxxx_xxxx(bi). Inside the function, after

local declarations, the following is added:

#itdef MAPPING
if (mapping)
printf("%s\n", Zxxxxxxx_xxxx_trcbck);
#endif
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Here is an example of a behavior instance function declaration prior to adding the new code:

static void

Z000002T_4440(bi)

BHP bi;

{

Z000002T_4112_struct *cd =
(2000002T_4112_struct *)bi->data;

And here is the modified behavior instance function:

static void

Z000002T_4440(bi)

BHP bi;

{

Z000002T_4112_struct *cd =
(2000002T_4112_struct *)bi->data;

#ifdef MAPPING
if (mapping)
printf("%s\n", Z000002T_4440_trcbck);
#endif
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Appendix G. Key Source Code

This Appendix describes some of the key source code necessary to implement parallel VHDL
simulations with SPECTRUM. The code presented concerns interfacing VSIM and SPECTRUM.
It is important to recognize that an event is logically equivalent to a signal change that is passed

from one LP to another. A complete code listing is presented in a second volume.

G.1 wvspec_init().

This routine builds a table of function pointers for SPECTRUM. Each function pointer rep-
resents the starting code for the simulation on each LP. For VSIM, all LPs start with the routine
startup(). Therefore, every entry in functions[] is loaded with the address of startup(). Also, a
call to read_mapping() is made so VSIM can determine which LPs are assigned which behaviors.
Finally, a call is made to SPECTRUM’s Ip_level_init(), where SPECTRUM initializes and each LP

calls startup(). Here is the code for vspec_init(), which is found in the file vspec.c:

void vspec_init()

{
void (*functions[NUM_PROCS])();
char *args[NUM_PROCS];
char *argument;
int i;

/* initialize function pointers and lp #s as arguments */
for (i = 0; i < NUM_PROCS; i++) {
functions[i] = startup;
argument = (char *)malloc(5+*sizeof(char));
sprintf(argument, "%d", i);
args[i] = argument;
}

read_mapping(); /* read in lpx.map file */

lp_level_init(functions, args);
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G.2 startup().

This routine, also found in vspec.c, is called by SPECTRUM after initialization. SPECTRUM
passes each LP its LP number through startup(), and startup() calls lp_init() so SPECTRUM can
initialize the VSIM filters. Finally, vhdl_main() is called in the intermediate C code so the circuit

may be constructed. The source code for startup() is as follows:

void startup(lp_no)

char *1p_no;

{
sscanf(lp_no, "%d", &my_lp); /* set global my_lp */
free(lp_no);
1p_init(my_l1p); /* set up filter tables */
vhdl_main();

}

G.8 send_signal().

This routine, also in the file vspec.c, is used to build an event out of a signal record, and call

SPECTRUM’s lp_post_event(), as follows:

void send_signal(this_signal_rec, dest)

SIG_REC *this_signal_rec;
int dest;

struct event *new_event;

new_event = (struct event *)malloc(sizeof(struct event));
new_event -> from_lp = my_lp;

new_event -> to_lp = dest;

new_event -> time = *sim_time;

new_event -> event = SIGNAL_CHANGE;

new_event -> id = this_signal_rec -> sr_ptr -> id;
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new_event -> value = this_signal_rec -> value;
nevw_event -> next = NULL;

lp_post_event(new_event);
free(new_event);

G.4 receive_signal().

This function passes received events from other LPs (via SPECTRUM) to VSIM. First, a call
to SPECTRUM is made in Ip_gei_event(). This also activates the receive filter, shown later. If the
filter passes receive_signal() a null pointer, then it returns to VSIM without posting a signal record
into the local active list. Otherwise, the newly received event is converted into a signal record and

posted directly into the active list. This function, shown below, is found in the file vspec.c.

void receive_signal()

{
struct event *event;
SIG_REC *new_sig_rec;
SRP signal;
int value;
int time;

event = lp_get_event();

if (event != NULL) {
signal = srrec_ptrlevent -> id];
value = event -> value;
time = event -> time;
MAKE_SIG_REC(signal, value, time);

insert_sig_rec(new_sig_rec);
free(event);
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G.5 null_post_fitr().

This is the filter used when VSIM sends an event to another LP. The filter is logically equiv-
alent to AFIT’s chanclocks post filter. For VSIM, the filter tracks the times a message was sent on
each output arc. Also, when an event is sent to one LP, this filter sends a null message to all other

output arcs. The post filter, found in the file vfilt.c, is follows:

void null_post_f1ltr()

{
int i;
/* update output channel time for this message */
if (event_to_post -> event != NULL_MSG && RUM_OUT_LPS > 0) {
for (i = 0; i < NUM_OUT_ARCS; i++) {
if (OUT_ARCS(i) == event_to_post -> to_lp)
output_ctime[i] = event_to_post -> time;
}
}
/* send nulls to other lps #*/
if (event_to_post->to_lp != my_lpid) {
for (i = 0; i < NUM_OUT_ARCS; i++){
it (OUT_ARCS(i) != event_to_post -> to_lp)
send_null(OUT_ARCS(i), event_to_post -> time);
}
}
}

G.6 able_to_proceed().

This routine, found in the file vfilt.c, determines (1) at least one message has been received
from every upstream LP, and (2) the next event in SPECTRUM’s input queue is less than the safe

time, as follows:

BOOL able_to_proceed()
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if (event_list == NULL)
return FALSE;

/* if haven’t yet received a message from everybody */
if (safetime() == -1)
return FALSE;

/* if still may get an earlier message */
if (event_list -> time > safetime())

return FALSE;

return TRUE;

G.7 safetime().

This routine determines the minimum input channel time for all input arcs. It is found in

vfilt.c, and lists as follows:

int safetime()

{
int min_input_ctime = input_ctime[0];
int i;
for (i = 1; i < NUM_IN_ARCS; i++) {
if (input_ctime[i] < min_input_ctime)
min_input_ctime = input_ctime[i];
}
return (min_input_ctime);
}

G.8 send_nulls().

This function is used to send null messages to all downstream LPs prior to blocking for

incoming messages (explained below in null_get_fitr()). The time stamp of the null messages is the
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minimum of (1) the “iow time” of the active list in VSIM, anc (2) the safe time plus the output

delay for the local LP. The code, found in ufilt.c, is as follows:

void send_nulls()

{
int i;
int safe_time = safetime();
int vhdl_low_time = get_low_time();

for (i = 0; i < NUM_OUT_ARCS; i++)
it (OUT_ARCS(i) != my_lpid)
if (vhdl_low_time < safe_time + LP_OUT_DELAYS(i))
send_null(OUT_ARCS(i), vhdl_low_time);
else
send_null (QUT_ARCS(i), safe_time + LP_OUT_DELAYS(i));

G.9 null_get_fitr().

This is the filter used when receiving events from upstream LPs. First, if there are no upstream
LPs, the function simply returns and VSIM continues. Otherwise, the filter gets a message (if
able_to_proceed()), and returns it to VSIM if it is not a null message. The event is passed to VSIM
by removing it from SPECTRUM’s input queue and assigning it to SPECTRUM’s global variable
called current_event. If an event is not ready (not able_to_proceed()), then the filter determines if
VSIM can continue without an event, i.e., if VSIM’s low time is less than or equal to the safc time.

The code, found in vfilt.c, is as follows:

void null_get_tltr()

{
int vhdl_low_time = get_low_time();
BOOL found = FALSE;
EVENT #*temp;

if (NUM_IN_LPS == 0)
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return;

while (!found) {
if (able_to_proceed()) {

if (event_list->event != NULL_NSG)
found = TRUE;

else {
temp = event_list;
event_list = event_list->next;
node_trash_event(temp);

}
}
else {
if (vhdl_low_time <= safetime())
return;
else {
send_nulls();
while (!able_to_proceed())
node_block_til_message();
}
}

}

current_event = event_list;
event_list = event_list->next;

150




Bibliography

. Ball, Duane and Susan Hoyt. “The Adaptive Time-Warp Concurrency Control Algorithm.”

SCS Multiconference on Distributed Simulation. 174-177. January 1990.

. Banks, Jerry and John S. Carlson, II. Discrete-Event System Simulation. Englewood Cliffs,

NJ: Prentice-Hall, Inc., 1984.

. Bergman, Kenneth C. Dynamic Spatial Partitioning of a Battlefield Parallel Discrete- Event

Simulation. MS thesis, AFIT/GCS/ENG, School of Engineering, Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB OH, December 1992.

. Breeden, Thomas A., “AFIT Parallel VHDL Simulator User’s Guide,” 1992. User’s Guide.

5. Chamberlain, Roger D. and Mark A. Franklin. “Hierarchical Discrete-Event Simulation on

11.

12.

13.

14.

15.

16.
17.

18.

19.

Hypercube Architectures,” IEEE Micro, 10-20 (August 1990).

. Chandy, K.M. and J. Misra. “Distributed Simulation: A Case Study in Design and Verifica-

tion of Distributed Programs,” IEEE Transactions of Software Engineering, SE-5(5):440-452
(September 1979).

. Chandy, K.M. and J. Misra. “Asynchronous Distributed Simulation via a Sequence of Parallel

Computations,” Communications of the ACM, 24(11):198-206 (April 1981).

. Chandy, K.M. and J. Misra. “Distributed Deadlock Detection,” ACM Transactions on Com-

puter Systems, 1(2):144-156 (May 1983).

. Christensen, E., April 1992. AFIT Parallel Simulation Lecture.
10.

Comeau, Ronald C. Parallel Implementation of VHDL Simulations on the Intel iPSC/2 Hy-
percube. MS thesis, AFIT/GCS/ENG/91D-03, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1991.

Daniel, David W. Development of a Hardware Acceleration Engine. MS thesis,
AFIT/GCS/ENG, School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1992.

DeGroat, Joe, et al. “AFIT VHDL Environment.” Proceedings-1988 Frontiers in Education
Conference. 324-329. 1988.

Dewey, Allen and Anthony Gadient. “VHDL Motivation,” IEEE Design and Test, 12-16
(April 1986).

Fujimoto, Richard M. “Performance Measurements of Distributed Simulation Strategies.”
Distributed Simulation 1988. 14-20. 1988.

Fujimoto, Richard M. “Parallel Discrete Event Simulation.” Proceedings of the 1989 Winter
Stmaulation Conference. 1-34. 1989.

Hartrum, Thomas C., “AFIT Guide to SPECTRUM,” 1992. User’s Guide.

Hennessy, John L. and David A. Patterson. Computer Architecture: a Quantitative Approach.
San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1990.

Hodges, Billy R., et al. “A Distributed Kernal for VHDL Simulation.” Proceedings of the IEEE
1990 National Aerospace and Electronics Conference. 215-220. 1990.

Hwang, Kai and Faye A. Briggs. Computer Archilecture and Parallel Processing. McGraw-
Hill, 1984.

151




20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

The Institute of Electrical and Electronic Engineers, Inc., 345 East 47th Street, New York,
NY 10017. IEEE Standard VHDL Language Reference Manual, 1988.

Lewis, Ted G. and Hesham El-Rewini. Introduction to Parallel Computing. Englewood Cliffs,
New Jersey: Prentice-Hall, Inc, 1992.

Lipsett, Roger, et al. VHDL: Hardware Description and Design. Norwell MA: Kluwar Aca-
demic Publishers, 1990.

Mason, Tony and Doug Brown. lez & yacc. Sebastopol. CA 95472: O’Reilly & Associates,
Inc., 1984.

McNear, Andrew E. Improved Task Scheduling for Parallel Simulations. MS thesis,
AFIT/GCS/ENG/91D-14, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1991.

Misra, Jayadev. “Distributed Discrete-Event Simulation,” ACM Computing Surveys,
18(1):39-65 (March 1986).

Neelamkavil, Francis. Computer Simulation and Modelling. Dublin, Ireland: John Wiley &
Sons, 1987.

Pritsker, Alan B. Introduction to Simulation and SLAM II. West Lafayette, Indiana: Systems
Publishing Corporation, 1986.

Proicou, Michael Chris. A Distributed Kernel for Simulation of the VHSIC Hardware De-

scription Language. MS thesis, AFIT/GCS/ENG/89D-14, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, December 1989.

Quinn, Michael J. Designing Efficient Algorithms for Parallel Computers. Mc Graw-Hill, Inc.,
1984.

Reynolds, Jr., Paul F. “A Spectrum of Options for Parallel Simulation.” Proceedings of the
ACM Winter Simulation Conference. 1988.

Reynolds, Jr., Paul F. “Comparative Analyses of Parallel Simulation Protocols.” Proceedings
of the 1989 Winter Simulation Conference. 671-679. 1989.

Reynolds, Jr., Paul F. and P.M. Dickens. “SPECTRUM: A Parallel Simulation Testbed.”
Proceedings of the 4th Annual Hypercube Conference. 1989.

Van Horn, Prescott J. Development of a Protocol User’s Guideline for Conservative Parallel
Simulations. MS thesis, AFIT/GCS/ENG/92D-19, School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, December 1992.

Zhang, Guoqing. “Partitioning and Transformation of VHDL Models for Distributed Simula-
tion.” 6th Workshop on Parallel and Distributed Simulation (PADS92). 203-205. 1992.

152




Vita

Captain Thomas Andrew Breeden was born on October 14, 1961, in Punta Gorda, Florida.
He graduated from J.M. Tate High School in Pensacola, Florida, in 1979 and enlisted in the Air
Force in 1981. In 1988, he received a B.S. Electrical Engineering degree, with high honors, from the
University of Florida. He was commissioned a Second Lieutenant on September 29, 1988. Captain
Breeden was assigned to the 6555th Aerospace Test Group, Cape Canaveral Air Force Station, as

a launch network controller before his entry into AFIT in May 1991.

Permanent address: 8567 Chemstrand Rd.
Pensacola FL 32514

153




Form Approved

REPORT DOCUMENTATION PAGE OME No. 0704-0188

Pubhc reporting purden tor this coltection of Mtormation 1s estimateq 1o average ! hour per response, INCluding the time fOr reviewing INSIructions, searcning exist:ng aata sources. |
gathering ang Maintaning the data needea, and compieting ana reviewing tre collection of information. Send comments regarding this burden estimate or anv other aspect of this
collection 5t Information, inciuding sugaestions tor reducing this burgen to Washington Heaaquarters Services, Directorate for intormation Operations and Reports, 1215 Jetterson
Davis Highway, Suite 1204, Arlington, V& 22202-4302. and 10 the Othce of Atanagement and Budger, Paperwork Reguction Project (0704-0 188), washington. OC 20503

v

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1992

3. REPORT TYPE AND DATES COVERED '
Master’s Thesis 4

+4. TITLE AND SUBTITLE

PARALLEL SIMULATION OF
i STRUCTURAL VHDL CIRCUITS ON
' INTEL HYPERCUBES

5. FUNDING NUMBERS

6. AUTHOR(S)
: Thomas A. Breeden, Captain, USAF

. e-——

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology, WPAFB OH 45433-6583

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA

3701 North Fairfax Drive
Arlington, VA 22203
(703) 696-2298

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/92D-01

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

| 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

are obtained for some configurations.

Many VLSI circuit designs are too large to be simulated with VADL in a reasonable amount of time. One
approach to reducing the simulation time is to distribute the simulation over several processors. This research
creates an environment for designing and simulating structural VEDL circuits on the Intel 1PSC/2 and iPSC/860
Hypercubes. Logic gates and system behaviors are partitioned among the processors, and signal changes are
shared via event messages. Circuit simulations are run over the SPECTRUM parallel simulation testbed, and
the null-message paradigm is used to avoid deadlock. Structural circuits ranging from forty to over one thousand
logic gates are correctly simulated. Although no attempt is made to find optimai partitioning strategies, speedups

i —r—————
14. SUBJECT TERMS

Parallel Simulation, VHDL, Circuit Simulation, Intel Hypercube 167

15. NUMBER OF PAGES

16. PRICE CODE

[17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION
OF REPORY OF THIS PAGE

UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF ABSTRACT

UNCLASSIFIED UL

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
:3?“'3'?" bv ANSt Std 239.'8




